pubs.acs.org/joc
acids to alkynes catalyzed by transition metals is an efficient
Gold(I)-Catalyzed Addition of Carboxylic Acids to
Alkynes
way to prepare enol esters4 and has been extensively studied
by ruthenium complexes.5 The electrophilic activation of
terminal alkynes by suitable ruthenium complexes together
with carboxylic acids has provided an easy access to alk-1-en-
2-yl esters 1 and (Z)-alk-1-enyl esters 2 derived from the
Markovnikov6 and the anti-Markovnikov addition, respec-
tively (Scheme 1).7
Bathoju Chandra Chary and Sunggak Kim*
Division of Chemistry and Biological Chemistry, School of
Physical and Mathematical Sciences, Nanyang Technological
University, Singapore 637371, Singapore
SCHEME 1. Ru-Catalyzed Addition of Acids to Alkynes
Received August 6, 2010
The gold(I)-catalyzed intramolecular addition of car-
boxylic acids and esters to terminal alkynes, which results
in lactones, was reported previously by several groups,8 but
somewhat surprisingly, only one example of the intermolec-
ular version was reported to date.9 Reaction of acetic acid
with 3-hexyne in tetrahydrofuran at 60 °C using (triphenyl-
phosphine)gold(I) pentafluoropropionate and boron tri-
fluoride etherate as a cocatalyst afforded 3-hexene 3-acetate
in a very low yield (6.2%) along with 3-hexanone (12.3%).9
To improve this unsatisfactory result and to determine the
scope and limitations of hydroacyloxylation, we have inves-
tigated the addition of carboxylic acids to alkynes using
gold(I) catalysts along with our recent interest in the func-
tionalization of alkynes.10
Au(I)-catalyzed hydroacyloxylation of alkynes with car-
boxylic acids is described. PPh3AuCl/AgPF6 catalyst
affords the Markonikov addition products, whereas
PPh3AuCl/AgOTf catalyst gives the more stable isomer-
ized products via the Markonikov products.
We initially studied the effectiveness of gold(I) catalysts
using 1-hexyne and benzoic acid in toluene (Scheme 2). When
1-hexyne was treated with benzoic acid in toluene in the pre-
sence of Ph3PAuCl/AgOTf catalyst (5 mol %) at room tem-
perature for 15 h, somewhat surprisingly, an E- and Z-mixture
of a more stable enol benzoate 4 was isolated in 87% yield
(entry 1). Apparently, the initially formed Markovnikov addi-
tion product 3was isomerized completely to the thermodynami-
cally more stable enol benzoate 4. Ph3PAuCl/AgBF4 was
Gold catalysis has attracted a great deal of recent attention
due to its extraordinary versatility in functional group
transformations associated with carbon-carbon multiple
bonds.1 Among various useful functionalizations of alkynes,
Au(I)-catalyzed nucleophilic additions to alkynes proved to
be synthetically useful and include hydroamination,2 hydro-
xylation, and hydroalkoxylation.3 Addition of carboxylic
(5) For reviews, see: (a) Bruneau, C.; Dixneuf, P. H. Chem. Commun.
1997, 507. (b) Bruneau, C.; Neveux, M.; Kabouche, Z.; Ruppin, C.; Dixneuf,
P. H. Synlett 1991, 755. (c) Bruneau, C.; Dixneuf, P. H. Acc. Chem. Res. 1999,
32, 311. (d) Bruneau, C.; Dixneuf, P. H. Angew. Chem., Int. Ed. 2005, 45,
2176.
(1) For reviews on gold catalysis, see: (a) Hashmi, A. S. K. Chem. Soc.
Rev. 2008, 37, 1766. (b) Li, Z.; Brouwer, C.; He, C. Chem. Rev. 2008, 108,
3239. (c) Arcadi, A. Chem. Rev. 2008, 108, 3266. (d) Patil, N.; Yamamoto, Y.
Chem. Rev. 2008, 108, 3395. (e) Li, Z.; Brouwer, C.; He, C. Chem. Rev. 2008,
108, 3239. (f ) Shen, H. C. Tetrahedron 2008, 64, 3885. (g) Muzart, J.
Tetrahedron 2008, 64, 5815. (h) Skouta, R.; Li, C. J. Tetrahedron 2008, 64,
4917. (i) Furstner, A. Chem. Soc. Rev. 2009, 38, 3208. ( j) Shapiro, N. D.;
Toste, F. D. Synlett 2010, 675.
(2) (a) Fukuda, Y.; Utimoto, K.; Nozaki, H. Synthesis 1991, 975.
(b) Muller, T. E. Tetrahedron Lett. 1998, 39, 5961. (c) Muller, T. E.; Grosche,
M.; Herdtweck, E.; Pleier, A. K.; Walter, E.; Yan, Y. K. Organometallics
2000, 19, 170. (d) Mizushima, E.; Hayashi, T.; Tanaka, M. Org. Lett. 2003, 5,
3349. (e) Luo, Y.; Li, Z.; Li, C. J. Org. Lett. 2005, 7, 2675.
(3) (a) Fukuda, Y.; Utimoto, K. J. Org. Chem. 1991, 56, 3729. (b)
Fukuda, Y.; Utimoto, K. Bull. Chem. Soc. Jpn. 1991, 64, 2013. (c) Arcadi,
A.; Cerichelli, G.; Chiarini, M.; Giuseppe, S.; Marinelli, F. Tetrahedron Lett.
2000, 41, 9195. (d) Teles, J. H.; Brode, S.; Chabanas, M. Angew. Chem., Int.
Ed. 1998, 37, 1415. (e) Hashmi, A. S. K.; Schwarz, L.; Choi, J. H.; Frost, M.
Angew. Chem., Int. Ed. 2000, 39, 2285. (f ) Antoniotti, S.; Genin, E.; Michelet,
V.; Genet, J. P. J. Am. Chem. Soc. 2005, 127, 9976.
(4) For reviews on transition-metal-catalyzed reactions of alkynes, see:
(a) Muller, T. E.; Beller, M. Chem. Rev. 1998, 98, 675. (b) Alonso, F.;
Beletskaya, I. P.; Yus, M. Chem. Rev. 2004, 104, 3079. (c) Bruneau, C.;
Dixneuf, P. H. Angew. Chem., Int. Ed. 2006, 45, 2176. (d) Yamamoto, Y. J.
Org. Chem. 2007, 72, 7817.
(6) (a) Rotem, M.; Shvo, Y. Organometallics 1983, 2, 1689. (b) Mitsudo,
T.; Hori, Y.; Yamakawa, Y.; Watanabe, Y. J. Org. Chem. 1987, 52, 2230.
(c) Ruppin, C.; Dixneuf, P. H. Tetrahedron Lett. 1986, 27, 6323. (d) Ruppin,
C.; Dixneuf, P. H.; Lecolier, S. Tetrahedron Lett. 1988, 29, 5365. (e) Philippot,
K.; Devanne, D.; Dixneuf, P. H J. Chem. Soc., Chem. Commun. 1990, 119.
(f) Opstal, T.; Verpoort, F. Tetrahedron Lett. 2002, 43, 9259.
(7) (a) Doucet, H.; Hofer, J.; Bruneau, C.; Dixneuf, P. H. J. Chem. Soc.,
Chem. Commun. 1993, 850. (b) Tokunaga, M.; Suzuki, T.; Koga, N.;
Fukushima, T.; Horiuchi, A.; Wakatsuki, Y. J. Am. Chem. Soc. 2001, 123,
11917. (c) Doucet, H.; MartinVaca, B.; Bruneau, C.; Dixneuf, P. H. J. Org.
Chem. 1995, 60, 7247. (d) Melis, K.; Samulkiewiecz, P.; Rynkowski, J.;
Verpoort, F. Tetrahedron Lett. 2002, 43, 2713. (e) Gossen, L. J.; Paetzold, J.;
Koley, D. Chem. Commun. 2003, 706.
(8) (a) Genin, E.; Toullec, P. Y.; Antoniotti, S.; Brancour, C.; Genet, J. P.;
Michelet, V. J. Am. Chem. Soc. 2006, 128, 3112. (b) Harkat, H.; Weibel,
J. M.; Pale, P. Tetrahedron Lett. 2006, 47, 6273. (c) Kang, J.-E.; Shin, S.
Synlett 2006, 717.
(9) Roembke, P.; Schmidbaur, H.; Cronje, S.; Raubenheimer, H. J. Mol.
Catal. A 2004, 212, 35.
(10) Lee, P. H.; Kim, S.; Park, A. R.; Chary, B. C.; Kim, S. Angew. Chem.,
Int. Ed. 2010, 49, 6806.
7928 J. Org. Chem. 2010, 75, 7928–7931
Published on Web 10/25/2010
DOI: 10.1021/jo101543q
r
2010 American Chemical Society