Journal of the American Chemical Society
Article
electronic effects of the ArH ring provide a useful structure−
property trend regarding whether ArF−ArH interactions occur
in structurally analogous PEs. In addition, this concept of
complementarity of the ArF and ArH rings can extend to ArF
rings with a smaller extent of fluorination, with larger apparent
electrostatic substituent effects from the ArH ring required to
observe ArF−ArH interactions consistently.
ACKNOWLEDGMENTS
■
The authors thank the U.S. Department of Energy, Basic
Energy Sciences (DE-SC0016423), for generous support of this
research. Data for X-ray crystal structures were obtained on
instrumentation supported by the National Science Foundation
(CHE-1229426).
Many of the efforts and successes in the field of conjugated
materials have originated from designing, tuning, and
optimizing the connectivity of only those atoms and groups
that are part of the π-conjugated portions of small molecules
and polymers, while side chains are often included only as a
necessity to enable solubility. This work highlights that discrete,
rationally designed non-covalent interactions of non-conjugated
substituents can have dramatic effects on solid-state properties
by dictating conformations and interchain packing of
conjugated materials. It is currently not clear, however, to
what extent these design principles will extend to other classes
of conjugated systems. Ongoing topics of research under
consideration in our laboratory involve the potential to harness
the local nature of substituent effects through regiochemistry of
substitution, the extent to which such interactions between side
chains and main chains persist as the number of repeating units
along the conjugated backbone increases, and the role, if any,
that the strength of these interactions has in the sensitivity of
optical properties to applied mechanical force.
REFERENCES
■
(1) Sutton, C.; Risko, C.; Bredas, J. L. Chem. Mater. 2016, 28, 3−16.
(2) Hu, W.; Yan, Q. F.; Zhao, D. H. Chem. - Eur. J. 2011, 17, 7087−
7094.
(3) Hoogboom, J.; Swager, T. M. J. Am. Chem. Soc. 2006, 128,
15058−15059.
(4) Kapadia, P. P.; Ditzler, L. R.; Baltrusaitis, J.; Swenson, D. C.;
Tivanski, A. V.; Pigge, F. C. J. Am. Chem. Soc. 2011, 133, 8490−8493.
(5) Koren, A. B.; Curtis, M. D.; Francis, A. H.; Kampf, J. W. J. Am.
Chem. Soc. 2003, 125, 5040−5050.
(6) Yoosaf, K.; Belbakra, A.; Llanes-Pallas, A.; Bonifazi, D.; Armaroli,
N. Pure Appl. Chem. 2011, 83, 899−912.
(7) Mukherjee, A. Cryst. Growth Des. 2015, 15, 3076−3085.
(8) Kumar, Y.; Kumar, S.; Keshri, S. K.; Shukla, J.; Singh, S. S.;
Thakur, T. S.; Denti, M.; Facchetti, A.; Mukhopadhyay, P. Org. Lett.
2016, 18, 472−475.
(9) Li, Y. X.; Lee, T. H.; Park, S. Y.; Uddin, M. A.; Kim, T.; Hwang,
S.; Kim, J. Y.; Woo, H. Y. Polym. Chem. 2016, 7, 4638−4646.
(10) Uddin, M. A.; Lee, T. H.; Xu, S.; Park, S. Y.; Kim, T.; Song, S.;
Nguyen, T. L.; Ko, S. J.; Hwang, S.; Kim, J. Y.; Woo, H. Y. Chem.
Mater. 2015, 27, 5997−6007.
(11) Coates, G. W.; Dunn, A. R.; Henling, L. M.; Dougherty, D. A.;
Grubbs, R. H. Angew. Chem., Int. Ed. Engl. 1997, 36, 248−251.
(12) Dai, C. Y.; Nguyen, P.; Marder, T. B.; Scott, A. J.; Clegg, W.;
Viney, C. Chem. Commun. 1999, 2493−2494.
(13) Kilbinger, A. F. M.; Grubbs, R. H. Angew. Chem., Int. Ed. 2002,
41, 1563−1566.
(14) Salonen, L. M.; Ellermann, M.; Diederich, F. Angew. Chem., Int.
Ed. 2011, 50, 4808−4842.
(15) Pace, C. J.; Gao, J. M. Acc. Chem. Res. 2013, 46, 907−915.
(16) Berger, R.; Resnati, G.; Metrangolo, P.; Weber, E.; Hulliger, J.
Chem. Soc. Rev. 2011, 40, 3496−3508.
(17) Ponzini, F.; Zagha, R.; Hardcastle, K.; Siegel, J. S. Angew. Chem.,
Int. Ed. 2000, 39, 2323−2325.
(18) Dou, J. H.; Zheng, Y. Q.; Yao, Z. F.; Yu, Z. A.; Lei, T.; Shen, X.
X.; Luo, X. Y.; Sun, J. L.; Zhang, S. D.; Ding, Y. F.; Han, G. C.; Yi, Y.
P.; Wang, J. Y.; Pei, J. J. Am. Chem. Soc. 2015, 137, 15947−15956.
(19) Zhu, L. Y.; Tong, F.; Salinas, C.; Al-Muhanna, M. K.; Tham, F.
S.; Kisailus, D.; Al-Kaysi, R. O.; Bardeen, C. J. Chem. Mater. 2014, 26,
6007−6015.
(20) Reichenbacher, K.; Suss, H. I.; Hulliger, J. Chem. Soc. Rev. 2005,
34, 22−30.
(21) Gung, B. W.; Amicangelo, J. C. J. Org. Chem. 2006, 71, 9261−
9270.
(22) Wheeler, S. E. J. Am. Chem. Soc. 2011, 133, 10262−10274.
(23) Hwang, J. W.; Dial, B. E.; Li, P.; Kozik, M. E.; Smith, M. D.;
Shimizu, K. D. Chem. Sci. 2015, 6, 4358−4364.
(24) Parrish, R. M.; Sherrill, C. D. J. Am. Chem. Soc. 2014, 136,
17386−17389.
ASSOCIATED CONTENT
■
S
* Supporting Information
The Supporting Information is available free of charge on the
Full experimental section including detailed descriptions
of synthesis, NMR spectra, optical spectra, and
descriptions of crystallography (PDF)
X-ray crystallographic data for NMe2-F5 (CIF)
X-ray crystallographic data for CO2Me-F5 (violet
X-ray crystallographic data for CO2Me-F5 (blue
X-ray crystallographic data for CF3-F5 (CIF)
X-ray crystallographic data for NO2-F5 (CIF)
X-ray crystallographic data for NMe2-F3 (CIF)
X-ray crystallographic data for OMe-F3 (CIF)
X-ray crystallographic data for H-F3 (CIF)
X-ray crystallographic data for CO2Me-F3 (CIF)
X-ray crystallographic data for CF3-F3 (violet fluores-
X-ray crystallographic data for CF3-F3 (blue fluores-
X-ray crystallographic data for CN-F3 (CIF)
(25) Hwang, J.; Li, P.; Carroll, W. R.; Smith, M. D.; Pellechia, P. J.;
Shimizu, K. D. J. Am. Chem. Soc. 2014, 136, 14060−14067.
(26) Garcia, A. M.; Determan, J. J.; Janesko, B. G. J. Phys. Chem. A
2014, 118, 3344−3350.
AUTHOR INFORMATION
■
Corresponding Author
(27) Ehrlich, S.; Moellmann, J.; Grimme, S. Acc. Chem. Res. 2013, 46,
916−926.
(28) Sherrill, C. D. Acc. Chem. Res. 2013, 46, 1020−1028.
(29) Watt, M.; Hardebeck, L. K. E.; Kirkpatrick, C. C.; Lewis, M. J.
Am. Chem. Soc. 2011, 133, 3854−3862.
ORCID
Notes
The authors declare no competing financial interest.
(30) Ringer, A. L.; Sherrill, C. D. J. Am. Chem. Soc. 2009, 131, 4574−
4575.
J
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX