Page 9 of 11
Journal of the American Chemical Society
[Co-1a]-COF we could clearly identify the resonance corre-
sponding to the oxime proton based on its highly downfield
from design to applications. Chem. Soc. Rev. 2013, 42, 548–
568.
(9) Lohse, M. S.; Bein, T. Covalent Organic Frameworks: Struc-
tures, Synthesis, and Applications. Adv. Funct. Mater. 2018,
28, 1705553.
(10) Stegbauer, L.; Schwinghammer, K.; Lotsch, B. V. A hydrazone-
based covalent organic framework for photocatalytic hydrogen
production. Chem. Sci. 2014, 5, 2789–2793.
1
2
3
4
5
6
7
8
1
shifted resonance. The 2D H-1H Dq-Sq experiment showed
two cross-peaks for the oxime proton consistent with the
incorporation of the co-catalyst into the COF material. MD
simulations with subsequent quantum-chemical NMR chem-
ical shift calculations allowed us to locate the position of the
tethered ligand inside the pore based on the experimentally
observed oxime proton cross peaks. Our analysis suggests
that the cobaloxime in [Co-1a]-COF closely interacts with
the pore wall. We surmise this interaction is responsible
both for the improved photocatalytic activity and for the
prolonged activity of the hybrid samples with respect to the
physisorbed variant. We anticipate that larger pore chan-
nels or the addition of dedicated transport pores will further
improve the pore accessibility and prevent back-reaction via
local confinement of the products, thereby further increasing
increase the hydrogen evolution activity of the system even
further.
(11) Haase, F.; Banerjee, T.; Savasci, G.; Ochsenfeld, C.;
Lotsch, B. V. Structure–property–activity relationships in
a
pyridine containing azine-linked covalent organic framework
for photocatalytic hydrogen evolution. Faraday Discuss. 2017,
201, 247–264.
(12) Stegbauer, L.; Zech, S.; Savasci, G.; Banerjee, T.; Podjaski, F.;
Schwinghammer, K.; Ochsenfeld, C.; Lotsch, B. V. Tailor-Made
Photoconductive Pyrene-Based Covalent Organic Frameworks
for Visible-Light Driven Hydrogen Generation. Adv. Energy
Mater. 2018, 8, 1703278.
(13) Wang, X.; Chen, L.; Chong, S. Y.; Little, M. A.; Wu, Y.;
Zhu, W.-H.; Clowes, R.; Yan, Y.; Zwijnenburg, M. A.;
Sprick, R. S.; Cooper, A. I. Sulfone-containing covalent organic
frameworks for photocatalytic hydrogen evolution from water.
Nat. Chem. 2018, 10, 1180–1189.
(14) Banerjee, T.; Haase, F.; Savasci, G.; Gottschling, K.; Ochsen-
feld, C.; Lotsch, B. V. Single-Site Photocatalytic H2 Evolution
from Covalent Organic Frameworks with Molecular Cobaloxime
Co-Catalysts. J. Am. Chem. Soc. 2017, 139, 16228–16234.
(15) Biswal, B. P.; Vignolo-Gonza´lez, H. A.; Banerjee, T.; Grunen-
berg, L.; Savasci, G.; Gottschling, K.; Nuss, J.; Ochsenfeld, C.;
Lotsch, B. V. Sustained Solar H2 Evolution from a Thiazolo[5,4-
d]thiazole-Bridged Covalent Organic Framework and Nickel-
Thiolate Cluster in Water. J. Am. Chem. Soc. 2019, 141,
11082–11092.
(16) Banerjee, T.; Gottschling, K.; Savasci, G.; Ochsenfeld, C.;
Lotsch, B. V. H2 Evolution with Covalent Organic Framework
Photocatalysts. ACS Energy Letters 2018, 3, 400–409.
(17) Dempsey, J. L.; Brunschwig, B. S.; Winkler, J. R.; Gray, H. B.
Hydrogen Evolution Catalyzed by Cobaloximes. Acc. Chem.
Res. 2009, 42, 1995–2004.
(18) Artero, V.; Chavarot-Kerlidou, M.; Fontecave, M. Splitting Wa-
ter with Cobalt. Angew. Chem. Int. Ed. 2011, 50, 7238–7266.
(19) Muresan, N. M.; Willkomm, J.; Mersch, D.; Vaynzof, Y.; Reis-
ner, E. Immobilization of a Molecular Cobaloxime Catalyst for
Hydrogen Evolution on a Mesoporous Metal Oxide Electrode.
Angew. Chem. Int. Ed. 2012, 51, 12749–12753.
(20) Nasalevich, M. A.; Becker, R.; Ramos-Fernandez, E. V.; Castel-
lanos, S.; Veber, S. L.; Fedin, M. V.; Kapteijn, F.; Reek, J.
N. H.; van der Vlugt, J. I.; Gascon, J. Co@NH2-MIL-125(Ti):
cobaloxime-derived metal–organic framework-based composite
for light-driven H2 production. Energy & Environmental Sci-
ence 2015, 8, 364–375.
(21) Gao, L.-F.; Zhu, Z.-Y.; Feng, W.-S.; Wang, Q.; Zhang, H.-L.
Disentangling the Photocatalytic Hydrogen Evolution Mecha-
nism of One Homogeneous Cobalt-Coordinated Polymer. The
Journal of Physical Chemistry C 2016, 120, 28456–28462.
(22) Cao, S.-W.; Liu, X.-F.; Yuan, Y.-P.; Zhang, Z.-Y.; Fang, J.;
Loo, S. C. J.; Barber, J.; Sum, T. C.; Xue, C. Artificial photo-
synthetic hydrogen evolution over g-C3N4 nanosheets coupled
with cobaloxime. Phys. Chem. Chem. Phys. 2013, 15, 18363.
(23) Li, X.; Masters, A. F.; Maschmeyer, T. Photocatalytic Hydrogen
Evolution from Silica-Templated Polymeric Graphitic Carbon
Nitride-Is the Surface Area Important? ChemCatChem 2014,
7, 121–126.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Associated Content
Supporting Information
Experimental procedures, COF synthesis, details of
molecular dynamic simulations and quantum chemical cal-
culations and additional measurements.
Author Information
Corresponding Authors
Bettina V. Lotsch (b.lotsch@fkf.mpg.de)
Notes
The authors declare no competing financial interests.
Acknowledgement Financial support is gratefully ac-
knowledged from the Max Planck Society, an ERC Start-
ing Grant (project COF Leaf, grant number 639233), the
Deutsche Forschungsgemeinschaft (DFG) via the SFB 1333
(project A03), the Cluster of Excellence e-conversion, and
the Center for Nanoscience. PR acknowledges the Deutsche
Forschungsgemeinschaft (DFG, German Research Founda-
tion) SFB 1309 – 325871075, project A3 and Fonds der
Chemischen Industrie. We thank Prof. T. Bein and Prof.
W. Schnick (University of Munich, LMU) for granting access
to the XRD facility and V. Duppel and M.-L. Schreiber for
the assistance with material analysis.
(24) Lazarides, T.; McCormick, T.; Du, P.; Luo, G.; Lindley, B.;
Eisenberg, R. Making Hydrogen from Water Using a Homoge-
neous System Without Noble Metals. J. Am. Chem. Soc. 2009,
131, 9192–9194.
References
(1) Li, L.; Cai, Z.; Wu, Q.; Lo, W.-Y.; Zhang, N.; Chen, L. X.;
Yu, L. Rational Design of Porous Conjugated Polymers and
Roles of Residual Palladium for Photocatalytic Hydrogen Pro-
duction. J. Am. Chem. Soc. 2016, 138, 7681–7686.
(2) Zhang, Y.; Mao, F.; Wang, L.; Yuan, H.; Liu, P. F.;
Yang, H. G. Recent Advances in Photocatalysis over
Metal–Organic Frameworks-Based Materials. Solar RRL 2019,
1900438.
(3) Diercks, C. S.; Liu, Y.; Cordova, K. E.; Yaghi, O. M. The role
of reticular chemistry in the design of CO2 reduction catalysts.
Nat. Mater. 2018, 17, 301–307.
(4) Vyas, V. S.; hei Lau, V. W.; Lotsch, B. V. Soft Photocataly-
sis: Organic Polymers for Solar Fuel Production. Chem. Mater.
2016, 28, 5191–5204.
(5) Sick, T.; Hufnagel, A. G.; Kampmann, J.; Kondofersky, I.; Ca-
lik, M.; Rotter, J. M.; Evans, A.; D¨oblinger, M.; Herbert, S.;
Peters, K.; B¨ohm, D.; Knochel, P.; Medina, D. D.; Fattakhova-
Rohlfing, D.; Bein, T. Oriented Films of Conjugated 2D Cova-
lent Organic Frameworks as Photocathodes for Water Splitting.
J. Am. Chem. Soc. 2017, 140, 2085–2092.
(6) Cˆot´e, A. P.; Benin, A. I.; Ockwig, N. W.; O&039,; Keeffe, M.;
Matzger, A. J.; Yaghi, O. M. Porous, Crystalline, Covalent Or-
ganic Frameworks. Science 2005, 310, 1166.
(25) Lakadamyali, F.; Reisner, E. Photocatalytic H2 evolution from
a molecular cobalt catalyst on a dye-
neutral water with
sensitised TiO2 nanoparticle. Chem. Commun. 2011, 47, 1695.
(26) Yin, M.; Ma, S.; Wu, C.; Fan, Y. A noble-metal-free photocat-
alytic hydrogen production system based on cobalt(iii) complex
and eosin Y-sensitized TiO2. RSC Advances 2015, 5, 1852–
1858.
(27) Uribe-Romo, F. J.; Doonan, C. J.; Furukawa, H.; Oisaki, K.;
Yaghi, O. M. Crystalline Covalent Organic Frameworks with
Hydrazone Linkages. J. Am. Chem. Soc. 2011, 133, 11478–
11481.
(28) Gottschling, K.; Stegbauer, L.; Savasci, G.; Prisco, N. A.; Berk-
son, Z. J.; Ochsenfeld, C.; Chmelka, B. F.; Lotsch, B. V. Molec-
ular Insights into Carbon Dioxide Sorption in Hydrazone-Based
Covalent Organic Frameworks with Tertiary Amine Moieties.
Chem. Mater. 2019, 31, 1946–1955.
(29) Zhang, Y.; Shen, X.; Feng, X.; Xia, H.; Mu, Y.; Liu, X. Covalent
organic frameworks as pH responsive signaling scaffolds. Chem.
Commun. 2016, 52, 11088–11091.
(30) Chen, X.; Addicoat, M.; Jin, E.; Xu, H.; Hayashi, T.; Xu, F.;
Huang, N.; Irle, S.; Jiang, D. Designed synthesis of double-stage
two-dimensional covalent organic frameworks. Sci. Rep. 2015,
5, 14650.
(31) Li, Z.-J.; Ding, S.-Y.; Xue, H.-D.; Cao, W.; Wang, W. Synthe-
sis of –C=N– linked covalent organic frameworks via the direct
condensation of acetals and amines. Chem. Commun. 2016, 52,
7217–7220.
(7) Tilford, R. W.; Mugavero, S. J.; Pellechia, P. J.; Lavigne, J. J.
Tailoring Microporosity in Covalent Organic Frameworks. Adv.
Mater. 2008, 20, 2741–2746.
(8) Ding, S.-Y.; Wang, W. Covalent organic frameworks (COFs):
ACS Paragon Plus Environment
9