798 J . Org. Chem., Vol. 61, No. 2, 1996
Notes
Sch em e 4
g, 2.5 mmol) in 5 mL of THF at 0 °C was added the lactone 2, 3,
4 or 5 (1.25 mmol) in solution in 5 mL of THF. The resulting
mixture was warmed up to room temperature and stirred for 1
h. Evaporation of the solvent gave 6, 7, 8, or 12 as a colorless
oil in a quantitative yield. Ring opening of lactone 14 is
conducted similarly with 1 (0.644 g, 2.5 mmol) and the lactone
14 (0.05 mmol), giving rise quantitatively to 17 and 18. The
same procedure is used for reactions involving anhydrides 21,
22 (4 mmol of 1, 1 mmol of 21 or 22), and 23 (8 mmol of 1, 1
mmol of 23).
(m, 1H), 7.32-7.47 and 7.73-7.93 (m, 20H); MS m/z 523 (M +
1)+. Anal. Calcd for C28H28O2P2S2: C, 64.35; H, 5.40. Found:
C, 64.29; H, 5.37.
1,4-Bu ta n ed iyl bis(d ip h en ylp h osp h in ite) (10): yield 70%;
31P{1H} NMR (C6D6) δ 112.0; 13C{1H} NMR (C6D6) δ 28.0, 69.5,
128.3, 129.1, 130.9, i-Ph not detected; 1H NMR (C6D6) δ 1.55
(m, 4H), 3.66 (m, 4H), 6.93-7.16 and 7.55-8.05 (m, 20H). The
corresponding disulfide derivative 10′ has also been identified:
31P{1H} NMR (C6D6) δ 80.1 (s, Ph2P(S)O); MS m/z 523 (M + 1)+.
Anal. Calcd for C28H28O2P2S2: C, 64.35; H, 5.40. Found: C,
64.32; H, 5.55.
1,3-B i s [(c h lo r o d i c y c lo p e n t a d i e n y lz i r c o n i o )o x y ]-
bu ta n e (6): 13C{1H} NMR (C6D6) δ 25.2, 44.4, 72.9, 77.3, 114.0,
114.2; 1H NMR (C6D6) δ 1.05 (d, 3H), 1.52 (m, 2H), 3.92-4.35
(m, 3H), 6.01, 6.02, 6.07, 6.09 (s, 20H).
1,5-P en tan ediyl bis(diph en ylph osph in ite) (11): yield 80%;
31P{1H} NMR (CDCl3) δ 111.3; 13C{1H} NMR (CDCl3) δ 22.1,
30.9, 69.8, 128.1, 129.0, 130.1, i-Ph not detected; 1H NMR
(CDCl3) δ 1.50 (m, 2H), 1.70 (tt, 4H), 3.82 (td, 4H), 7.31-7.37
and 7.44-7.53 (m, 20H). The corresponding disulfide derivative
11′ has also been identified: 31P{1H} NMR (C6D6) δ 79.9; MS
m/z 537 (M + 1)+. Anal. Calcd for C29H30O2P2S2: C, 64.91; H,
5.63. Found: C, 64.82; H, 5.75.
1,4-B i s [(c h lo r o d i c y c lo p e n t a d i e n y lz i r c o n i o )o x y ]-
1
bu ta n e (7): 13C{1H} NMR (C6D6) δ 30.9, 75.9, 113.9; H NMR
(C6D6) δ 1.52 (m, 4H), 3.93 (m, 4H), 6.05 (s, 20H).
1,5-B i s [(c h lo r o d i c y c lo p e n t a d i e n y lz i r c o n i o )o x y ]-
p en ta n e (8): 13C{1H} NMR (CDCl3) δ 22.1, 33.0, 75.6, 113.3;
1H NMR (CDCl3) δ 1.25-1.51 (m, 6H), 3.99 (t, 4H), 6.28 (s, 20H).
1,4-Bis[(ch lor od icyclop en ta d ien ylzir con io)oxy]-2-m eth -
ylen ebu ta n e (12): 13C{1H} NMR (CDCl3) δ 36.6, 74.2, 78.2,
110.0, 113.6, 113.7, 146.6; 1H NMR (CDCl3) δ 2.12 (t, 2H,
CH2Cd), 4.10 (t, 2H), 4.44 (s, 2H), 4.83 (s, 1H), 5.00 (s, 1H), 6.28
(s, 10H), 6.31 (s, 10H).
2-Met h ylen e-1,4-b u t a n ed iyl b is(d ip h en ylp h osp h in it e)
(13) (31P{1H} NMR (CDCl3) δ 112.2 and 114.0) was isolated as
its disulfide form 13′: yield 80%; 31P{1H} NMR (CDCl3) δ 81.3
and 82.3 (s, Ph2P(S)O); 13C{1H} NMR (CDCl3) δ 33.7, 62.7, 66.8,
115.75, 128.7, 128.8, 131.7, 132.1, 132.2, 134.4, 134.5, 140.6; 1H
NMR (CDCl3) δ 2.51 (t, 2H), 4.13 (td, 2H), 4.44 (d, 2H), 5.05 (d,
1H), 5.21 (d, 1H), 7.38-7.46 and 7.77-7.91 (m, 20H); MS m/z
535 (M + 1)+. Anal. Calcd for C29H28O2P2S2: C, 65.15; H, 5.28.
Found: C, 65.11; H, 5.36.
1,4,7-T r is [(c h lo r o d ic y c lo p e n t a d ie n y lzir c o n io )o x y ]-
h ep ta n e (18): 13C{1H} NMR (CDCl3) δ 29.8, 34.3, 75.7, 84.5,
114.0; 1H NMR (CDCl3) δ 1.33-2.19 (m, 8H), 3.92-4.11 (m, 5H),
6.29 (s, 30H).
1,4,7-Hep ta n etr iyl tr is(d ip h en ylp h osp h in ite) (19) (31P-
{1H} NMR (CDCl3) δ 113.0 (broad)) was isolated as its disulfide
form 19′: yield 45%; 31P{1H} NMR (CDCl3) δ 79.5 and 81.0; 13C-
{1H} NMR (CDCl3) δ 25.8, 31.1, 64.5, 76.0, 128.4, 128.5, 130.7,
131.0, 131.2, 131.4, 131.7, i-Ph not detected; 1H NMR (CDCl3) δ
1.66 (m, 8H), 3.87 (m, 4H), 4.77 (m, 1H), 7.34-7.51 and 7.75-
7.87 (m, 30H); MS m/z 797 (M + 1)+. Anal. Calcd for
N,N,N′,N′-Tetr a k is[(ch lor od icyclop en ta d ien ylzir con io)-
oxy]eth yl-1,4-eth ylen ed ia m in e (24): 13C{1H} NMR (CDCl3)
δ 52.7, 57.8, 74.3, 114.1.
Typ ica l P r oced u r e for Exch a n ge Rea ction s w ith Zir -
con a ted Sp ecies 6, 7, 8, 12, 18, a n d 24 a n d Ch lor od ip h e-
n ylp h osp h in e. To the zirconated species (1 mmol) in solution
in 10 mL of THF at -78 °C was added chlorodiphenylphosphine
(2, 4, 5, or 8 mmol), depending on the considered zirconated
compound. The resulting mixture was stirred for 12 h at room
temperature. After evaporation of the solvent diphosphinites
10 and 11 were extracted with pentane (40 mL). The diphos-
phinites 9 and 12, the triphosphinite 19, or the tetraphosphinite
25 were treated with sulfur (1.1 equiv per phosphinite function)
for 12 h at room temperature. The resulting phosphinite sulfides
were purified by chromatography eluting with a dichloromethane/
pentane (1/3) solution for 9′ and 12′ or with an acetonitrile/
dichloromethane (1/1) solution for 19′ and 26.
C
43H43O3P3S3: C, 64.81; H, 5.44. Found: C, 64.78; H, 5.37.
N,N,N′,N′-Tet r a k is[[(d ip h en ylp h osp h a n yl)oxy]et h yl]-
1,4-eth ylen ed ia m in e (25) (31P{1H} NMR (CDCl3) δ 115.3) was
isolated as its disulfide form 26: yield 50%; 31P{1H} NMR
(CDCl3) δ 82.5; 13C{1H} NMR (CDCl3) δ 53.2, 54.5, 62.7, 128.3,
131.0, 131.7, 134.1; 1H NMR (CDCl3) δ 2.55 (m, 4H), 2.79 (t,
8H), 3.93 (td, 8H), 7.35-7.41 and 7.76-7.87 (m, 40H); MS m/z
1102 (M + 1)+. Anal. Calcd for C58H60N2O4P4S4: C, 63.26; H,
5.49. Found: C, 63.18; H, 5.39.
1,3-Bu ta n ed iyl bis(d ip h en ylp h osp h in ite) (9)
(
31P{1H}
NMR (CDCl3) δ 107.0 and 112.3) was isolated as its disulfide
form 9′: yield 80%; 31P{1H} NMR (CDCl3) δ 79.2 and 81.6 (s,
Ph2P(S)O); 13C{1H} NMR (CDCl3) δ 21.9, 29.7, 60.9, 70.6, 128.3,
128.4, 130.7, 131.0, 131.2, 131.4, 131.7, i-Ph not detected; 1H
NMR (CDCl3) δ 1.21 (d, 3H), 2.06 (m, 2H), 4.07 (m, 2H), 5.04
Ack n ow led gm en t. Thanks are due to the CNRS
(France) and KBN (Poland, Grant 3T0A03709) for
financial support.
J O951222W