Chemistry - A European Journal
10.1002/chem.201602855
COMMUNICATION
trifluoromethyl radical.[11] Addition of the trifluoromethyl radical to the vinyl azide, followed by loss of nitrogen, provides iminyl radical 7.
An intramolecular addition of this radical to the pendant aryl ring leads to the cyclohexadienyl radical 8, a highly acidic species.
Following deprotonation by the ortho-iodobenzoate anion (or the stoichiometric Cs2CO3 base), the heteroarene radical anion 9 is
generated that can formally liberate an electron, propagating the catalytic cycle, and forming the product heteroarene 10.
Scheme 2 (about here)
In summary, we have presented an approach for the synthesis of fluoroalkylated phenanthridines and quinoxalinones starting with
readily prepared vinyl azides. This electron-catalyzed process uses the commercially available Togni reagent 3, along with Bu4NI as
an initiator, to form the fluoroalkyl radical. This reaction proceeds without the need for a transition metal catalyst, and forms not only
the C-CF3 bond, but also the new heteroarene ring.
Experimental Section
Typical Procedure for the Trifluoromethylation of Vinyl Azides 1 and 4: Under an argon atmosphere, vinyl azide 1a (100 mg, 0.45 mmol, 1.0 mol
equiv.), NBu4I (7.5 mg, 0.023 mmol, 5 mol%), Cs2CO3 (295 mg, 0.905 mmol, 2.0 mol equiv.), and Togni reagent (334 mg, 0.905 mmol, 2.0 mol equiv.)
were dissolved in dry dioxane (2.25 mL). The reaction vial was then sealed, and stirred at 80 °C for 2 h. The reaction mixture was then cooled to room
temperature, and dry loaded onto a silica column. Flash chromatography (silica gel, pentane to 10% EtOAc/pentane) afforded the target phenanthridine
2a as an off-white solid (87 mg, 74 %).
Acknowledgements
We thank the Deutsche Forschungsgemeinschaft (DFG) for funding this work.
Keywords: Electron catalysis • vinyl azides • phenanthridines • quinoxalinones
[1]
[2]
[3]
a) K. Müller, C. Faeh, F. Diederich, Science 2007, 317, 1881-1886; S. Purser, P. R. Moore, S. Swallow, V. Gouverneur, Chem. Soc. Rev. 2008, 37, 320-
330; c) Y. Zhou, J. Wang, Z. Gu, S. Wang, W. Zhu, J. L. Aceña, V. A. Soloshonok, K. Izawa, H. Liu, Chem. Rev. 2016, 116, 422-518.
a) N. Hatae, E. Fujita, S. Shigenobu, S. Shimoyama, Y. Ishihara, Y. Kurata, T. Choshi, T. Nishiyama, C. Okada, S. Hibino, Bioorg. Med. Chem. Lett. 2015,
25, 2749–2752; b) L.-M. Tumir, M. R. Stojković, I.Piantanida, Beilstein J. Org. Chem. 2014, 10, 2930–2954; c) T. Ishikawa, Med. Res. Rev. 2001, 21, 61-72.
a) Y. Ramli, A. Moussaif, K. Karrouchi, E. M. Essassi, J. Che. 2014, 1-21; L. Xun, Y. Kang-hui, L. Wei-lu, X. Wen-fang, Drugs Future 2006, 31, 1-11; c) A.
Carta, S. Piras, G. Loriga, G. Paglietti, Mini Rev. Med. Chem. 2006, 11, 1179-1200.
[4]
[5]
[6]
X.-F. Wu, H. Neumann, M. Bell, Chem. Asian J. 2012, 7, 1744-1754.
T. Yang, H. Zhu, W. Yu, Org. Biomol. Chem. 2016, 14, 3376-3384.
a) B. Zhang, C. Mück-Lichtenfeld, C. G. Daniliuc, A. Studer, Angew. Chem., Int. Ed. 2013, 52, 10792-10795; b) Q. Wang, X. Dong, T. Xiao, L. Zhou, Org.
Lett. 2013, 15, 4846-4849; c) Y. Cheng, H. Jiang, Y. Zhang, S. Yu, Org. Lett. 2013, 15, 5520-5523; d) Y.-F. Wang, G. H. Lonca, M. Le Runigo, S. Chiba,
Org. Lett. 2014, 16, 4272-4275; e) H. Jiang, Y. Cheng, R. Wang, M. Zheng, Y. Zhang, S. Yu, Angew. Chem., Int. Ed. 2013, 52, 13289-13292; f) J. Rong, L.
Deng, P. Tan, C. Ni, Y. Gu, J. Hu, Angew. Chem. Int. Ed. 2016, 55, 2743-2747; g) W. Fu, M. Zhu, C. Xu, G. Zou, Z. Wang, B. Ji, J. Fluor. Chem. 2014, 168,
50-54. For a review, see h) B. Zhang, A. Studer, Chem. Soc. Rev. 2015, 44, 3505-3521.
[7]
[8]
J. Charpentier, N. Früh, A. Togni, Chem. Rev. 2015, 115, 650-682.
Other examples using vinyl azides as radical acceptors, see: a) A. Suzuki, M. Tabata, M. Ueda, Tetrahedron Lett. 1975, 2195-2198; b) S. Chiba, Chimia
2012, 66, 377-381; c) Y.-F. Wang, G. H. Lonca, S. Chiba, Angew. Chem., Int. Ed. 2014, 53, 1067-1071.
[9]
a) A. Studer, D. P. Curran, Nat. Chem. 2014, 6, 765-773; b) A. Studer, D. P. Curran, Angew. Chem. Int. Ed. 2016, 55, 58-102.
[10] M. Hartmann, Y. Li, A. Studer, Org. Biomol. Chem. 2016, 14, 206-210.
[11] The exact initiation process is not known. We currently assume that the iodide anion reacts with the Togni reagent via substitution of the carboxylate
substituent at the I(III)-atom to give an iodine(III)reagent bearing a very weak I-I-bond. Homolysis of the weak I-I-bond leads to an iodine atom, the CF3-
radical and the ortho-iodobenzoate anion.
Legends to Schemes and Tables
Figure 1. Pharmaceutically important and biologically active phenanthridines and quinoxalinones.
Scheme 1. Two distinct methods for the synthesis of trifluoromethylated phenanthridines, forming the
C-CF3 bond and the heterocycle concomitantly.
Scheme 2. Proposed mechanism for the trifluoromethylation of vinyl azides.