The Journal of Organic Chemistry
Page 14 of 15
1
2
3
4
5
6
7
8
9
(14) Eid, S.; Guerro, M.; Lorcy, D. 1,3ꢀThiazolineꢀ2ꢀthioneꢀ4,5ꢀdithiolato, an efficient building block towards functionalized dithiadiazafulvalenes.
Tetrahedron Lett. 2006, 47, 8333ꢀ8336.
(15) Morel, G.; Gachot, G.; Lorcy, D. Chemical and electrochemical investigations on the powerful πꢀelectron donor dithiadiazafulvalene: Isolation,
spectroscopic characterization and chargeꢀtransfer complexation. Synlett 2005, 1117ꢀ1120.
(16) Bssaibis, M.; Robert, A.; Lemagueres, P.; Quahab, L.; Carlier, R.; Tallec, A. A new route to dithiadiazafulvalene derivatives from mesoionic
thiazoles. Formation of a tenꢀmembered macrocycle by oxidation with oxygen and in situ generation of a charge transfer complex with
tetracyanoquinodimethane. J. Chem. Soc., Chem. Commun. 1993, 601ꢀ602.
(17) (a) Liu, Y.; Wang, C.; Xue, D.; Xiao, M.; Liu, J.; Li, C.; Xiao, J. Reactions Catalysed by a Binuclear Copper Complex: Relay Aerobic Oxidation
of NꢀAryl Tetrahydroisoquinolines to Dihydroisoquinolones with a Vitamin B1 Analogue. Chem. Eur. J. 2017, 23, 3062ꢀ3066. (b) For a recent review
on proton abstraction in thiamine analogues: Giovannini, P.P.; Bortolini, O.; Massi A. Thiaminꢀdiphosphateꢀdependent enzymes as catalytic tools for
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
the asymmetric benzoinꢀtype reaction. Eur. J. Org. Chem. 2016, 4441ꢀ4459.
(18) Pesch, J.; Harms, K.; Bach, T. Preparation of axially chiral N,N'ꢀdiarylimidazolium and Nꢀarylthiazolium salts and evaluation of their catalytic
potential in the benzoin and in the intramolecular Stetter reactions. Eur. J. Org. Chem. 2004, 2025ꢀ2035.
(19) (a) Gingras, M.; Félix, G.; Peresutti, R. One hundred years of helicene chemistry. Part 2: stereoselective syntheses and chiral separations of
carbohelicenes. Chem. Soc. Rev. 2013, 42, 1007ꢀ1050. (b) El Sayed Moussa, M.; Srebro, M.; Anger, E.; Vanthuyne, N.; Roussel, C.; Lescop C.;
Autschbach, J.; Crassous, J. Chiroptical properties of carbo[6]helicene derivatives bearing extended πꢀconjugated cyano substituents. Chirality 2013,
25, 455ꢀ465. (c) Srebro, M.; Anger, E.; Moore II, B.; Vanthuyne, N.; Roussel, C.; Réau, R. ; Autschbach, J.; Crassous, J. RutheniumꢀGrafted
Vinylhelicenes: Chiroptical Properties and Redox Switching. Chem. Eur. J. 2015, 21, 17100ꢀ17115. (d) SrebroꢀHooper, M.; Jean, M.; Vanthuyne, N.;
Toupet, L.; Williams, J.A.G; Torres, A.R.; Riives, A.J.; Muller, G.; Autschbach, J.; Crassous, J. Synthesis and Chiroptical Properties of Hexaꢀ, Octaꢀ,
and Decaꢀazaborahelicenes: Influence of Helicene Size and of the Number of Boron Atoms. Chem. Eur. J. 2017, 23, 407ꢀ418.
(20) Polavarapu, P.L. Molecular Structure Determination Using Chiroptical Spectroscopy: Where We May Go Wrong? Chirality, 2012, 24, 909ꢀ920.
(21) Additional DFT calculations were performed at the SMD(CH2Cl2)/B3LYP/ccꢀpvtz and SMD(CH2Cl2)/PBE0/6ꢀ311G(d,p) levels to comply with a
reviewer demand. As expected for conformational analysis very minor changes in stereoisomer energies and interconversion barriers were observed,
they do not significantly alter the general discussion based on the (SMD(CH2Cl2)/B3LYP/6ꢀ311G(d,p) level. The full resulting distorted tesseracts
with conformer energies and barriers to interchange are given in the supporting information.
(22) The tesseract presents 16 vertices and 32 edges, each edge being of the same length; in our work, it was largely distorted to place eight
diastereosiomers in a front panel leading to the distorted tesseract displayed in Figure 7. For an example of the use of a fourꢀdimensional hypercube
(tesseract) in conformational analysis see: Alkorta, I.; Elguero, J. Conformational analysis of N,N’ꢀdinaphthyl heterocyclic carbenes: imidazolꢀ2ꢀ
ylidenes and imidazolinꢀ2ꢀylidenes. Struct. Chem. 2011, 22, 1087–1094.
(23) Sandström, J. “Dynamic NMR Spectroscopy” Academic Press 1982 pp 81ꢀ84.
(24) Isaksson, R.; Liljefors, T. Conformations and barriers to inversion of sevenꢀmembered cyclic oxamides and their monothio and dithio analogs: a
study by dynamic nuclear magnetic resonance spectroscopy and molecular mechanics. J. Chem. Soc., Perkin Trans. 2 1981, 1344ꢀ1350.
(25) (a) Maharajh, R.B.; Snyder, J.P.; Britten, J.F.; Bell, R.A. Synthesis, highꢀfield NMR, xꢀray structure, and conformational analysis of a 10ꢀ
membered diamide disulfide ring. Canadian J. Chem. 1997, 75, 140ꢀ161. (b) Bain, A.D.; Bell, R.A.; Fletcher, D.A.; Hazendonk, P.; Maharajh, R.A.;
Rigby, S.; Valliant, J. F. NMR studies of chemical exchange amongst five conformers of a tenꢀmembered ring compound containing two amide bonds
and a disulfide. J. Chem. Soc., Perkin Trans. 2 1999, 1447ꢀ1453.
(26) Clark, A.J.; Curran, D.P.; Fox, D.J.; Ghelfi, F.; Guy, C.S.; Hay, B.; James, N.; Phillips, J.M.; Roncaglia, F.; Sellars, P.B.; Wilson, P.; Zhang, H.
Axially Chiral Enamides: Substituent Effects, Rotation Barriers, and Implications for their Cyclization Reactions. J. Org. Chem. 2016, 81, 5547ꢀ5565.
(27) Costil, R.; Lefebvre, Q.; Clayden, J. Mediumꢀsizedꢀring analogs of dibenzodiazepines by a conformationally induced Smiles ring expansion.
Angew. Chem. Int. Ed. 2017, 56, 14602ꢀ14606.
(28) Qadir, M.; Cobb, J.; Sheldrake, P.W.; Whittall, N.; White, A.J.P.; Hii, K.K.; Horton, P.N.; Hursthouse, M.B. Conformation Analyses, Dynamic
Behavior, and Amide Bond Distortions of Mediumꢀsized Heterocycles. 2. Partially and Fully Reduced 1ꢀBenzazocines, Benzazonines, and
Benzazecines. J. Org. Chem. 2005, 70, 1552ꢀ1557.
(29) Gaussian 16 Revision A.03: Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone,
V.; Petersson, G.A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A.V.; Bloino, J.; Janesko, B.G.; Gomperts, R.; Mennucci, B.; Hratchian, H.P.;
Ortiz, J.V.; Izmaylov, A.F.; Sonnenberg, J.L.; WilliamsꢀYoung, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson,
T.; Ranasinghe, D.; Zakrzewski, V.G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida,
M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J.A.; Peralta, Jr.J.E.; Ogliaro, F.; Bearpark, M. J.; Heyd,
J.J.; Brothers E.N.; Kudin, K.N.; Staroverov, V.N.; Keith, T.A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.P.; Burant, J.C.; Iyengar,
S.S.; Tomasi, J.; Cossi, M.; Millam, J.M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J.W.; Martin, R.L.; Morokuma, K.; Farkas, O.; Foresman, J.
B.; Fox, D.J. Gaussian Inc. Wallingford CT 2016.
15
ACS Paragon Plus Environment