ChemComm
Please do not adjust margins
Page 4 of 5
Journal Name
COMMUNICATION
P21/c(No. 14), a = 7.5934(2)Å, b = 6.2414(2)Å, c = 26.6906(7)Å, α
cyclopentenone 2j with iodine in the presence of DMAP and
potassium carbonate, furnished the -iodo cyclopentenone
6 in 92% yield (Scheme 3A).13a Alternatively, the -bromo
cyclopentenone variant can be readily accessed in analogous
yield using a slightly modified protocol (see SI).13b The
construction of the -halo cyclopentenones is particularly
important, owing to the fact that they readily participate in
metal-mediated cross-coupling reactions.14 In another
useful demonstration of synthetic utility, the
cyclopentenone 2d was oxidized using basic hydrogen
peroxide to the epoxy ketone 7 in 82% yield and with ≥19:1
diastereocontrol.15 The relative configuration of the epoxy
ketone 7 was determined via the X-ray crystallographic
analysis, which provides an interesting building block for
further elaboration.
We envisaged that the copper-catalyzed allylic oxidation
could facilitate an expeditious synthesis of the key
cyclopentenone core of ()-untenone A (4), which is a
natural product that was isolated from the Okinawan marine
sponge, plakortis sp. that exhibits modest cytotoxicity
against leukemia L1210 cell lines.10 Ring closing metathesis
of the known bis-allyl tertiary alcohol 8,16 prepared via allyl
Grignard addition to methyl heptadecanoate, with Hoveyda-
Grubbs catalyst followed by in situ trimethylsilyl protection
of the tertiary alcohol, furnished the prochiral cyclopentene
9 in 90% overall yield (Scheme 3B). Site-selective copper-
catalyzed allylic oxidation of 9 on gram-scale afforded the
cyclopentenone 10 in 70% yield with excellent site-
selectivity (≥19:1). The synthesis was completed by treating
the enolate derived from cyclopentenone 10 with Mander’s
reagent,17 followed by acid-mediated desilylation to furnish
(±)-untenone A (4) in 41% overall yield for the three step
sequence to illustrates the utility of this methodology.18
In summary, we have developed a copper-catalyzed
allylic oxidation of prochiral 4,4-disubstituted cyclopentenes
for the construction of -quaternary α,β-unsaturated
cyclopentenones. This study provides a direct comparison of
the leading transition-metal-catalyzed allylic oxidation
methods and demonstrates a rare example of a highly site-
selective allylic oxidation. Finally, the synthetic utility of this
method was demonstrated in a three-step total synthesis of
()-untenone A (4). Overall, this process represents a mild
and efficient method for the construction of -quaternary
α,β-unsaturated cyclopentenones.
= γ = 90 º, = 94.3100(10)º, V = 1261.38(6) Å3, Z = 4, Dcalc = 1.381
g cm-3, MoKα radiation, λ = 0.71073 Å, T = 180(2) K, θmax
DOI: 10.1039/C9=C3C00.1570443G°,
13271 reflections collected, 3582 unique (Rint = 0.0205). Final
GooF= 1.026, R1 = 0.0408 (I> 2σ(I)),wR2 = 0.1064 (all data, 3582
reflections), refinement on F2, 174 parameters and 0 restraints.
1
For a general review on allylic oxidation reactions, see: P.
C. Bulman Page, T. J. McCarthy, In Comprehensive Organic
Synthesis; Trost, B. M., Ed.; Pergamon: Oxford, 1991, vol 7,
p. 83. (b) V. Weidmann, W. Maison Synthesis, 2013, 45,
2201.
(c) M. B. Andrus In Science of Synthesis:
Stereoselective Synthesis, ed.’s J. G. de Vries, P. A. Evans
and G. A. Molander, Thieme, Stuttgart, Germany, 2011, vol
3, p. 469.
2
3
For selected reviews on allylic oxidation with chromium
and selenium, see: (a) J. Muzart, Chem Rev. 1992, 92, 113.
(b) D. Liotta, R. Monahan, III, Science, 1986, 231, 356.
Rh: (a) J. P. Collman, M. Kubota, J. W. Masking, J. Am.
Chem. Soc., 1967, 89,4809. (b) J. M. Reuters, A. Sinha, R.
G. Salomon, J. Org. Chem. 1978, 43, 2438. (c) S. Bien, Y.
Segal, J. Org. Chem., 1977, 42, 1685. (d) A. J. Catino, R. E.
Forslund, M. P. Doyle, J. Am. Chem. Soc. 2004, 126, 13622.
(e) A. C. Murphy, S. R. A. Devenish, A. C. Muscroft-Taylor,
J. W. Blunt, M. H. G. Munro Org. Biomol. Chem. 2008, 6,
3854. (f) E. C. McLaughlin, H. Choi, K. Wang, G. Chiou, M.
P. Doyle J. Org. Chem. 2009, 74, 730. (g) Y. Yu, R. Humeidi,
J. R. Alleyn, M. P. Doyle J. Org. Chem. 2017, 82, 8506.
Pd: (a) E. J. Corey, J.-Q. Yu. Org. Lett. 2002, 4, 2727. (b) E.
J. Corey, J.-Q. Yu, J. Am. Chem. Soc. 2003, 125, 3232.
Mn: T. K. M. Shing, Y. –Y. Yeung, P. L. Su, Org. Lett. 2006,
8, 3149.
Cu: (a) J. A. L. Salvador, M. L. Sáe Melo, A. S. Campos Neves,
Tetrahedron Lett. 1997, 38, 119. For a recent review on
copper-catalyzed allylic oxidation, see: (b) A. L. Garcia-
Cabeza, F. J. Moreno-Dorado, M. J. Ortefa, F. M. Guerra,
Synthesis, 2016, 48, A
Co: (a) A. R. S. Jorge, H. C. James, Chem. Commun., 2001,
33. (b) J. G. Magdalena, C. S. Alice, R. H. W. John,
Tetrahedron Lett. 2003, 44, 4283.
4
5
6
7
8
9
Bi: J. A. R. Salvador, S. M. Silvestre, Tetrahedron Lett. 2005,
46, 2581.
J. E. Baldwin, J. C. Swallow. Angew. Chem. Int. Ed. 1969, 8,
601.
10 For the isolation of untenone A (4), see: M. Ishibashi, S.
Takeuchi, J. Kobayashi, Tetrahedron Lett. 1993, 34, 3749.
11 Untenone A (4) represents a rare example of a natural
product that was isolated as a racemate.
12 For the synthesis of 1,13-herbertenediol from a -
quaternary -unsaturated ketone intermediate, see: F.
Hu, Q. Zhou, F. Cao, W.-D. Chu, L. He, Q.-Z. Liu J. Org. Chem.
2018, 83, 12806.
13 (a) M. E. Kraff, J. W. Cran. Synlett 2005, 1263. (b) F. Geng,
J. Liu, L. A. Paquette. Org. Lett., 2002, 4, 71.
We sincerely thank NSERC for a Discovery Grant and a
Tier 1 Canada Research Chair (PAE). We also acknowledge
the National Natural Science Foundation of China (21502044
– JJW and 201506130048 - QWG) for financial support. Dr.
Gabriele Schatte is thanked for the X-ray crystallographic
analysis of the epoxy ketone 7.
14 For reviews on α-haloenones in metal-mediated cross-
coupling reactions, see: (a) N. Miyara, A. Suzuki, Chem. Rev.
1995, 95, 2457. (b) E. Negishi J Organomet Chem. 1999;
576, 179. For representative examples in synthesis, see: (c)
C. P. Johnson, J. P. Adams, M. P. Braun, C. B. W.
Senanayake. Tetrahedron Lett. 1992, 33, 919. (d) P. A.
Evans, J. D. Nelson, T. Manangan, Synlett, 1997, 968.
15 (a) S. Takano, K. Inomata, T. Sato, M. Takahashi, K.
Ogasawara. J. Chem. Soc., Chem. Commun., 1990, 290. (b)
S. Kuwahara, M. Saito. Tetrahedron Lett. 2004, 45, 5047.
16 J. S. Baran, I. Laos, D. D. Langford, J. E. Miller, C. Jett, B.
Taite, E. Rohrbacher J. Med. Chem. 1985, 28, 597.
Conflicts of interest
There are no conflicts to declare.
Notes and references
17 L. N. Mander, S. P. Sethi. Tetrahedron Lett., 1983, 24, 5425.
‡Crystal structure data for 7: C14H14O5, M = 262.25, colourless,
plate-like, 0.199 0.181 0.120 mm3, monoclinic, space group
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 4
Please do not adjust margins