exists a large body of information, was used to give a proof of
concept for this new crosslinking process, but certainly without
any claim to compete with the best known electro-optic materials
in term of d33. The extension of this concept to a chromophore
exhibiting a larger quadratic hyperpolarizability than DR1 could
lead to polymers which combine high r33 coefficients along with
good electro-optic stability. Furthermore, this version of the
Huisgen reaction will certainly also be useful for other applications
where crosslinking is required, for example light emitting diode
technology or organic field effect transistors.17
Region Pays de la Loire is gratefully acknowledged for the
´
financial support of this research through the CPER and the
MILES-MATTADOR programs.
Fig. 2 Evolution of the intensity of the stretching band of azide in
PAS1 film as a function of the heating time at 150 1C.
Notes and references
1 (a) M. H. Davey, V. Y. Lee, L. M. Wu, C. R. Moylan, W. Volksen,
A. Knoesen, R. D. Miller and T. J. Marks, Chem. Mater., 2000, 12,
1679–1693; (b) H. Saadeh, D. Yu, L. M. Wang and L. P. Yu,
J. Mater. Chem., 1999, 9, 1865–1873.
2 D. M. Burland, R. D. Miller and C. A. Walsh, Chem. Rev., 1994,
94, 31–75.
3 Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee,
R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K. Y. Jen and
N. Peyghambarian, Nat. Photonics, 2007, 1, 180–185.
4 J. Luo, S. Huang, Y.-J. Cheng, T.-D. Kim, Z. Shi, X.-H. Zhou and
A. K. Y. Jen, Org. Lett., 2007, 9, 4471–4474.
5 (a) Y. Bai, N. Song, J. P. Gao, X. Sun, X. Wang, G. Yu and
Z. Y. Wang, J. Am. Chem. Soc., 2005, 127, 2060–2061; (b) J. Luo,
M. Haller, H. Ma, S. Liu, T.-D. Kim, Y. Tian, B. Chen,
S.-H. Jang, L. R. Dalton and A. K. Y. Jen, J. Phys. Chem. B,
2004, 108, 8523–8530.
Fig. 3 Thermal stability of electro-optic activity of polymers PAS1 and
PAS2 upon heating a film, initially poled at a rate of 2 1C minÀ1 in the air.
6 D. Bosc, F. Foll, B. Boutevin and A. Rousseau, J. Appl. Polym.
Sci., 1999, 74, 974–982.
7 (a) C. Monnereau, E. Blart, B. Illien, M. Paris and F. Odobel,
J. Phys. Org. Chem., 2005, 18, 1050–1058; (b) A. Apostoluk,
J. M. Nunzi, V. Boucher, A. Essahlaoui, R. Seveno,
H. W. Gundel, C. Monnereau, E. Blart and F. Odobel, Opt.
Commun., 2006, 260, 708–711.
These results clearly show that this new crosslinking process
increases the stability of the electro-optic activity of the polymers.
When the polymer is simply poled but not crosslinked, the
chromophores start to relax at 80 1C (circles), while NLO proper-
ties are maintained up to 137 1C after crosslinking (squares and
triangles). In other words, the present crosslinking system leads to
a gain of EO stability of ca. 60 1C for the PAS1 and PAS2
materials and represents a real improvement compared to the
previously known polymer PIII (diamonds), in which the NLO
stability was kept only until 105 1C. The temporal stability of PIII
was studied and proved to be satisfactory for several days at
85 1C, therefore it is reasonable to anticipate that PAS1 and PAS2
will be as stable and probably even more so.16 Finally, it should
be pointed out that no significant stability difference is noted for
the polymer incorporating MMA monomer (PAS1 vs. PAS2).
The production cost of these new materials can thus be substan-
tially lowered, without impairing their NLO properties.
8 H. Ma, A. K. Y. Jen and L. R. Dalton, Adv. Mater., 2002, 14,
1339–1365.
9 (a) J. F. Lutz, Angew. Chem., Int. Ed., 2007, 46, 1018–1025;
(b) W. H. Binder and R. Sachsenhofer, Macromol. Rapid
Commun., 2007, 28, 15–54; (c) V. Bock, D. H. Hiemstra and
J. H. van Maarseveen, Eur. J. Org. Chem., 2006, 51–68.
10 (a) Z. Li, Q. Zeng, G. Yu, Z. Li, C. Ye, Y. Liu and J. Qin, Macromol.
Rapid Commun., 2008, 29, 136–141; (b) Q. Zeng, Z. Li, Z. Li, C. Ye,
J. Qin and B. Z. Tang, Macromolecules, 2007, 40, 5634–5637.
11 (a) J. A. Johnson, J. M. Baskin, C. R. Bertozzi, J. T. Koberstein
and N. J. Turro, Chem. Commun., 2008, 3064–3066;
(b) J. M. Baskin, J. A. Prescher, S. T. Laughlin, N. J. Agard,
P. V. Chang, I. A. Miller, A. Lo, J. A. Codelli and C. R. Bertozzi,
Proc. Natl. Acad. Sci. U. S. A., 2007, 104, 16793–16797.
12 (a) A. Hayashi, Y. Goto, M. Nakayama, H. Sato, T. Watanabe and
S. Miyata, Macromolecules, 1992, 25, 5094–5098; (b) V. Ladmiral,
G. Mantovani, G. J. Clarkson, S. Cauet, J. L. Irwin and
D. M. Haddleton, J. Am. Chem. Soc., 2006, 128, 4823–4830.
13 C.-D. Keum, T. Ikawa, M. Tsuchimori and O. Watanabe,
Macromolecules, 2003, 36, 4916–4923.
In conclusion, we present the first example of crosslinkable EO
polymers based on the thermal Huisgen reaction. The polymers
can be prepared on a large scale (410 g) due to a facile synthetic
procedure and they exhibit good film-forming properties. After the
poling process, a smart control of the absorption band of azide
groups, monitored by FTIR, can be used to follow the crosslinking
process. The resulting materials exhibit very satisfying thermal
alignment stability, the d33 coefficient remaining constant up to
about 140 1C. These results demonstrate that the thermal Huisgen
1,3-dipolar azide–alkyne ‘‘click’’ reaction can be used successfully
to ensure the efficient crosslinking of NLO polymers. In this work,
a derivative of the well-known DR1 chromophore, for which there
14 M. Kunishima, C. Kawachi, J. Monta, K. Terao, F. Iwasaki and
S. Tani, Tetrahedron, 1999, 55, 13159.
15 M. Ergin, B. Kiskan, B. Gacal and Y. Yagci, Macromolecules,
2007, 40, 4724–4727; G. L’Abbe, Chem. Rev., 1969, 69, 345–363.
16 R. Levenson, J. Liang, C. Rossier, R. Hierle, E. Toussaere,
N. Bouadma and J. Zyss, Advances in organic polymer-based
optoelectronics, American Chemical Society, Washington DC, 1995.
17 (a) C. Kim, Z. Wang, H.-J. Choi, Y.-G. Ha, A. Facchetti and
T. J. Marks, J. Am. Chem. Soc., 2008, 130, 6867–6878; (b) B. Ma,
F. Lauterwasser, L. Deng, C. S. Zonte, B. J. Kim, J. M. J. Frechet,
C. Borek and M. E. Thompson, Chem. Mater., 2007, 19,
4827–4832.
ꢀc
This journal is The Royal Society of Chemistry 2009
Chem. Commun., 2009, 1825–1827 | 1827