Organic Letters
Letter
5, 2383. (d) Zhu, Y.; Buchwald, S. L. J. Am. Chem. Soc. 2014, 136, 4500.
(e) Li, M.; Berritt, S.; Walsh, P. J. Org. Lett. 2014, 16, 4312.
(f) Matsumoto, M.; Harada, M.; Yamashita, Y.; Kobayashi, S. Chem.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
Commun. 2014, 50, 13041. (g) Fernan
S. P. Chem. Sci. 2015, 6, 4973. (h) Wu, Y.; Hu, L.; Li, Z.; Deng, L. Nature
2015, 523, 445. (i) Li, M.; Yucel, B.; Jimenez, J.; Rotella, M.; Fu, Y.;
Walsh, P. J. Adv. Synth. Catal. 2016, 358, 1910. (j) Li, M.; Gonzalez-
́
dez-Salas, J. A.; Marelli, E.; Nolan,
́
X-ray data for rds504 (CIF)
Experimental procedures, analytical data for new com-
pounds, spectral data (PDF)
́
Esguevillas, M.; Berritt, S.; Yang, X.; Bellomo, A.; Walsh, P. J. Angew.
Chem., Int. Ed. 2016, 55, 2825. (k) Chen, P.; Yue, Z.; Zhang, J.; Lv, X.;
Wang, L.; Zhang, J. Angew. Chem., Int. Ed. 2016, 55, 13316. (l) Liu, J.;
Cao, C.-G.; Sun, H.-B.; Zhang, X.; Niu, D. J. Am. Chem. Soc. 2016, 138,
13103. (m) Guo, C.-X.; Zhang, W.-Z.; Zhou, H.; Zhang, N.; Lu, X.-B.
Chem. - Eur. J. 2016, 22, 17156. (n) Li, M.; Gutierrez, O.; Berritt, S.;
AUTHOR INFORMATION
■
Corresponding Author
ORCID
Pascual-Escudero, A.; Yesi̧ lcimen, A.; Yang, X.; Adrio, J.; Huang, G.;
Nakamaru-Ogiso, E.; Kozlowski, M. C.; Walsh, P. J. Nat. Chem. 2017,
Author Contributions
†K.L. and A.E.W. contributed equally.
(7) For select examples of decarboxylative generation of azaallyl
anions, see: (a) Burger, E. C.; Tunge, J. A. J. Am. Chem. Soc. 2006, 128,
10002. (b) Yeagley, A. A.; Chruma, J. J. Org. Lett. 2007, 9, 2879.
(c) Fields, W. H.; Chruma, J. J. Org. Lett. 2010, 12, 316. (d) Liu, X.; Gao,
A.; Ding, L.; Xu, J.; Zhao, B. Org. Lett. 2014, 16, 2118. (e) Qian, X.; Ji, P.;
He, C.; Zirimwabagabo, J.-O.; Archibald, M. M.; Yeagley, A. A.; Chruma,
J. J. Org. Lett. 2014, 16, 5228. (f) Tang, S.; Park, J. Y.; Yeagley, A. A.;
Sabat, M.; Chruma, J. J. Org. Lett. 2015, 17, 2042.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
(8) Daniel, P. E.; Weber, A. E.; Malcolmson, S. J. Org. Lett. 2017, 19,
3490.
This work was generously supported by the ACS Petroleum
Research Fund (56575-DNI1) and Duke University. K.L. thanks
Duke for Kathleen Zielik and Burroughs-Wellcome fellowships.
We thank Jason Luo for experimental assistance and Dr. Roger
Sommer (NC State) for X-ray crystallographic analysis.
(9) For enantiospecific ring-opening of terminal aryl-substituted
aziridines with carbon nucleophiles, see: (a) Ghorai, M. K.; Tiwari, D. P.
J. Org. Chem. 2010, 75, 6173. (b) Ghorai, M. K.; Nanaji, Y.; Yadav, A. K.
Org. Lett. 2011, 13, 4256. (c) Sayyad, M.; Mal, A.; Wani, I. A.; Ghorai, M.
K. J. Org. Chem. 2016, 81, 6424. For a kinetic resolution involving this
class of aziridines, see: (d) Chai, Z.; Zhu, Y.-M.; Yang, P.-J.; Wang, S.;
Wang, S.; Liu, Z.; Yang, G. J. Am. Chem. Soc. 2015, 137, 10088. For
enantiospecific transition-metal-mediated reactions of this class of
aziridines, see: (e) Calet, S.; Urso, F.; Alper, H. J. Am. Chem. Soc. 1989,
111, 931. (f) Piotti, M. E.; Alper, H. J. Am. Chem. Soc. 1996, 118, 111.
(g) Takeda, Y.; Ikeda, Y.; Kuroda, A.; Tanaka, S.; Minakata, S. J. Am.
Chem. Soc. 2014, 136, 8544.
REFERENCES
■
(1) For a review, see: Ji, X.; Huang, H. Org. Biomol. Chem. 2016, 14,
10557.
(2) For C−C bond-forming reactions that indirectly form 1,3-
diamines, see: (a) Johnson, T. A.; Jang, D. O.; Slafer, B. W.; Curtis, M.
D.; Beak, P. J. Am. Chem. Soc. 2002, 124, 11689. (b) Matsubara, R.;
Nakamura, Y.; Kobayashi, S. Angew. Chem., Int. Ed. 2004, 43, 1679.
(c) Fujimori, I.; Mita, T.; Maki, K.; Shiro, M.; Sato, A.; Furusho, S.;
Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2006, 128, 16438. (d) Wu, B.;
Gallucci, J. C.; Parquette, J. R.; RajanBabu, T. V. Angew. Chem., Int. Ed.
2009, 48, 1126. (e) Terada, M.; Machioka, K.; Sorimachi, K. Angew.
Chem., Int. Ed. 2009, 48, 2553. (f) Yin, L.; Kanai, M.; Shibasaki, M. J. Am.
Chem. Soc. 2009, 131, 9610. (g) Zhao, J.; Liu, X.; Luo, W.; Xie, M.; Lin,
L.; Feng, X. Angew. Chem., Int. Ed. 2013, 52, 3473. (h) Hyodo, K.;
Kondo, M.; Funahashi, Y.; Nakamura, S. Chem. - Eur. J. 2013, 19, 4128.
(i) Lin, S.; Kawato, Y.; Kumagai, N.; Shibasaki, M. Angew. Chem., Int. Ed.
2015, 54, 5183. (j) Kondo, M.; Nishi, T.; Hatanaka, T.; Funahashi, Y.;
Nakamura, S. Angew. Chem., Int. Ed. 2015, 54, 8198.
(3) For C−C bond-forming reactions with N-substituted nucleophiles
that directly afford a 1,3-diamine framework, see: (a) Blyumin, E. V.;
Gallon, H. J.; Yudin, A. K. Org. Lett. 2007, 9, 4677. (b) Shibahara, F.;
Kobayashi, S-i.; Maruyama, T.; Murai, T. Chem. - Eur. J. 2013, 19, 304.
(c) Yoshimura, T.; Kinoshita, T.; Yoshioka, H.; Kawabata, T. Org. Lett.
2013, 15, 864.
(4) For C−N bond-forming reactions, see: (a) Trost, B. M.; Malhotra,
S.; Olson, D. E.; Maruniak, A.; Du Bois, J. J. Am. Chem. Soc. 2009, 131,
4190. (b) Kurokawa, T.; Kim, M.; Du Bois, J. Angew. Chem., Int. Ed.
2009, 48, 2777. (c) Lu, H.; Jiang, H.; Wojtas, L.; Zhang, X. P. Angew.
Chem., Int. Ed. 2010, 49, 10192.
(10) For a stereospecific glycine ester Schiff base alkylation, see: Lou,
S.; McKenna, G. M.; Tymonko, S. A.; Ramirez, A.; Benkovics, T.;
Conlon, D. A.; Gonzal
(11) (a) Forbeck, E. M.; Evans, C. D.; Gilleran, J. A.; Li, P.; Joullie,
M. J. Am. Chem. Soc. 2007, 129, 14463. (b) Kelley, B. T.; Joullie, M. M.
́
ez-Bobes, F. Org. Lett. 2015, 17, 5000.
́
M.
́
Tetrahedron: Asymmetry 2013, 24, 1233. (c) Ohmatsu, K.; Ando, Y.;
Ooi, T. J. Am. Chem. Soc. 2013, 135, 18706. (d) Kelley, B. T.; Carroll, P.;
Joullie, M. M. J. Org. Chem. 2014, 79, 5121.
́
(13) Alkyl-substituted aziridines undergo terminal ring-opening but
deliver diamines with low diastereoselectivity (dr < 2.0:1).
(14) Identity of the major stereoisomer was determined by single-
crystal X-ray diffraction of imine hydrolysis product 9 (Scheme 5). All
other stereochemical assignments are made by inference.
(15) Several azaallyl anions are unreactive with 3a at −78 °C; however,
at either −60 or −45 °C, those reactions proceed to >98% conversion to
the 1,3-diamine within 3−10 h.
(16) Hydrolysis may be carried out directly in the workup of the
(17) (a) Shohji, N.; Kawaji, T.; Okamoto, S. Org. Lett. 2011, 13, 2626.
(b) Huang, C.-Y.; Doyle, A. G. J. Am. Chem. Soc. 2012, 134, 9541.
(18) (a) Panteleev, J.; Zhang, L.; Lautens, M. Angew. Chem., Int. Ed.
2011, 50, 9089. (b) Ghorai, M. K.; Nanaji, Y. J. Org. Chem. 2013, 78,
3867.
(5) For reactions with simultaneous C−C and C−N bond formations,
see: (a) Kano, T.; Hashimoto, T.; Maruoka, K. J. Am. Chem. Soc. 2006,
128, 2174. (b) Sibi, M. P.; Stanley, L. M.; Soeta, T. Org. Lett. 2007, 9,
1553. (c) Rueping, M.; Maji, M. S.; Kucu̧ k, H. B.; Atodiresei, I. Angew.
Chem., Int. Ed. 2012, 51, 12864. (d) Hashimoto, T.; Takiguchi, Y.;
Maruoka, K. J. Am. Chem. Soc. 2013, 135, 11473.
(19) For a related cyclization, see: Ritter, S.; Horino, Y.; Lex, J.;
Schmalz, H.-G. Synlett 2006, 2006, 3309.
̈
̈
(6) (a) Ding, C. Z. Tetrahedron Lett. 1996, 37, 945. (b) Chen, Y.-J.;
Seki, K.; Yamashita, Y.; Kobayashi, S. J. Am. Chem. Soc. 2010, 132, 3244.
(c) Li, M.; Yucel, B.; Adrio, J.; Bellomo, A.; Walsh, P. J. Chem. Sci. 2014,
̈
D
Org. Lett. XXXX, XXX, XXX−XXX