Inorganic Chemistry
Article
(33) Kabsch, W. XDS. Acta Crystallogr., Sect. D: Biol. Crystallogr.
2010, 66, 125−132.
(56) Shul’pin, G. B.; Matthes, M. G.; Romakh, V. B.; Barbosa, M. I.
F.; Aoyagi, J. L. T.; Mandelli, D. Oxidations by the system ‘hydrogen
peroxide−[Mn2L2O3][PF6]2 (L = 1,4,7-trimethyl-1,4,7-triazacyclono-
nane)−carboxylic acid). Part 10: Co-catalytic effect of different
carboxylic acids in the oxidation of cyclohexane, cyclohexanol, and
acetone. Tetrahedron 2008, 64, 2143−2152.
(57) Shul’pin, G. B. C−H functionalization: thoroughly tuning
ligands at a metal ion, a chemist can greatly enhance catalyst’s activity
and selectivity. Dalton Trans. 2013, 42, 12794−12818.
(58) Shul’pin, G. B. Selectivity enhancement in functionalization of
C−H bonds: a review. Org. Biomol. Chem. 2010, 8, 4217−4228.
(59) Shul’pin, G. B. Hydrocarbon oxygenations with peroxides
catalyzed by metal compounds. Mini-Rev. Org. Chem. 2009, 6, 95−
104.
(60) Bigoli, F.; Leporati, E.; Pellinghelli, M. A. S-Methylisothio-
carbonohydrazide hydroiodide, C2H9IN4S. Cryst. Struct. Commun.
1978, 7, 527−530.
(61) Shimazaki, Y.; Tani, F.; Fukui, K.; Naruta, Y.; Yamauchi, O.
One-electron oxidized nickel(II)−(disalicylidene)diamine complex:
temperature-dependent tautomerism between Ni(III)−phenolate and
Ni(II)−phenoxyl radical states. J. Am. Chem. Soc. 2003, 125, 10512−
10513.
(34) Sheldrick, G. M. A short history of SHELX. Acta Crystallogr.,
Sect. A: Found. Crystallogr. 2008, 64, 112−122.
(35) Burnett, M. N.; Johnson, G. K. ORTEPIII. Oak Ridge Thermal
Ellipsoid Plot Program for crystal structure illustrations, Technical
Report ORNL 6895; Oak Ridge National Laboratory: Oak Ridge,
TN, 1996.
(36) Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-
Salvetti correlation-energy formula into a functional of the electron
density. Phys. Rev. B: Condens. Matter Mater. Phys. 1988, 37, 785−789.
(37) Becke, A. D. Density-functional thermochemistry. III. The role
of exact exchange. J. Chem. Phys. 1993, 98, 5648−5652.
(38) Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J.
Ab initio calculation of vibrational absorption and circular dichroism
spectra using density functional force fields. J. Phys. Chem. 1994, 98,
11623−11627.
(39) Vosko, S. H.; Wilk, L.; Nusair, M. Accurate spin-dependent
electron liquid correlation energies for local spin density calculations:
a critical analysis. Can. J. Phys. 1980, 58, 1200−1211.
(40) Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. Self-
consistent molecular orbital methods. XX. A basis set for correlated
wave functions. J. Chem. Phys. 1980, 72, 650−654.
(41) McLean, A. D.; Chandler, G. S. Contracted Gaussian basis sets
for molecular calculations. I. Second row atoms, Z = 11−18. J. Chem.
Phys. 1980, 72, 5639−5648.
(42) Wachters, A. J. H. Gaussian basis set for molecular
wavefunctions containing third-row atoms. J. Chem. Phys. 1970, 52,
1033−1036.
(43) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;
Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson,
G. A.; Nakatsuji, H.; et al. Gaussian 09, Revision A.02; Gaussian, Inc.:
Wallingford, CT, 2016.
(44) Cossi, M.; Barone, V.; Mennucci, B.; Tomasi, J. Ab initio study
of ionic solutions by a polarizable continuum dielectric model. Chem.
Phys. Lett. 1998, 286, 253−260.
(62) Chiang, L.; Kochem, A.; Jarjayes, O.; Dunn, T. J.; Vezin, H.;
Sakaguchi, M.; Ogura, T.; Orio, M.; Shimazaki, Y.; Thomas, F.; Storr,
T. Radical localization in a series of symmetric NiII complexes with
oxidized salen ligands. Chem. - Eur. J. 2012, 18, 14117−14127.
(63) Cazacu, M.; Shova, S.; Soroceanu, A.; Machata, P.; Bucinsky,
L.; Breza, M.; Rapta, P.; Telser, J.; Krzystek, J.; Arion, V. B. Charge
and spin states in Schiff base metal complexes with a disiloxane unit
exhibiting a strong noninnocent ligand character: synthesis, structure,
spectroelectrochemistry, and theoretical calculations. Inorg. Chem.
2015, 54, 5691−5706.
̌
̌
́
(64) Machata, P.; Herich, P.; Luspai, K.; Bucinsky, L.; Soralova, S.;
Breza, M.; Kozisek, J.; Rapta, P. Redox reactions of nickel, copper, and
cobalt complexes with “noninnocent” dithiolate ligands: combined in
situ spectroelectrochemical and theoretical study. Organometallics
2014, 33, 4846−4859.
(45) Cossi, M.; Barone, V.; Cammi, R.; Tomasi, J. Ab initio study of
solvated molecules: a new implementation of the polarizable
continuum model. Chem. Phys. Lett. 1996, 255, 327−335.
(46) Neese, F. Prediction of electron paramagnetic resonance g
values using coupled perturbed Hartree−Fock and Kohn−Sham
theory. J. Chem. Phys. 2001, 115, 11080−11096.
(47) Sandhoefer, B.; Neese, F. One-electron contributions to the g-
tensor for second-order Douglas−Kroll−Hess theory. J. Chem. Phys.
2012, 137, 094102.
(65) Alexandru, M.; Cazacu, M.; Arvinte, A.; Shova, S.; Turta, C.;
Simionescu, B. C.; Dobrov, A.; Alegria, E. C. B. A.; Martins, L. M. D.
R. S.; Pombeiro, A. J. L.; Arion, V. B. μ-Chlorido-bridged
dimanganese(II) complexes of the Schiff base derived from [2 + 2]
condensation of 2,6-diformyl-4-methylphenol and 1,3-bis(3-
aminopropyl)tetramethyldisiloxane: structure, magnetism, electro-
chemical behaviour, and catalytic oxidation of secondary. Eur. J.
Inorg. Chem. 2014, 120−131.
(66) Sabbatini, A.; Martins, L. M. D. R. S.; Mahmudov, K. T.;
Kopylovich, M. N.; Drew, M. G. B.; Pettinari, C.; Pombeiro, A. J. L.
Microwave-assisted and solvent-free peroxidative oxidation of 1-
phenylethanol to acetophenone with a CuII−TEMPO catalytic
system. Catal. Commun. 2014, 48, 69−72.
(48) Neese, F. ORCA-an ab initio, density functional and semiempirical
̈ ̈
program package; Institut fur Chemische Energiekonversion: Mulheim
an der Ruhr, Germany, 2014.
(49) Sinnecker, S.; Rajendran, A.; Klamt, A.; Diedenhofen, M.;
Neese, F. Calculation of solvent shifts on electronic g-tensors with the
conductor-like screening model (COSMO) and its self-consistent
generalization to real solvents (Direct COSMO-RS). J. Phys. Chem. A
2006, 110, 2235−2245.
(67) Martins, L. M. D. R. S.; Pombeiro, A. J. L. Water-soluble C-
scorpionate complexes: catalytic and biological applications. Eur. J.
Inorg. Chem. 2016, 2236−2252.
(68) Nagataki, T.; Tachi, Y.; Itoh, S. NiII(TPA) as an efficient
catalyst for alkane hydroxylation with m-CPBA. Chem. Commun.
2006, 4016−4018.
(50) Gilbert, A. IQmol; Q-Chem, 2014.
(51) Bader, R. F. W. Atoms in Molecules: A Quantum Theory; The
International Series of Monographs on Chemistry; Oxford University
Press: Oxford, England, 1994.
(52) Keith, T. A. AIMAll; TK Gristmill Software: Overland Park, KS,
2015.
(69) Nakazawa, J.; Hori, T.; Stack, T. D. P.; Hikichi, S. Alkane
oxidation by an immobilized nickel complex catalyst: structural and
reactivity differences induced by surface-ligand density on meso-
porous silica. Chem. - Asian J. 2013, 8, 1191−1199.
(70) Kuznetsov, M.; Pombeiro, A. J. L. Radical formation in the
[MeReO3] (MTO) catalyzed aqueous peroxidative oxidation of
alkanes: a theoretical mechanistic study. Inorg. Chem. 2009, 48, 307−
318.
(71) Kirillova, M. V.; Kuznetsov, M. L.; Kozlov, Y. N.; Shul’pina, L.
S.; Kitaygorodskiy, A.; Pombeiro, A. J. L.; Shul’pin, G. B. Participation
of oligovanadates in alkane oxidation with H2O2 catalysed by
vanadate-anion in acidified acetonitrile: kinetic and DFT studies.
ACS Catal. 2011, 1, 1511−1520.
(53) Schuchardt, U.; Cardoso, D.; Sercheli, R.; Pereira, R.; da Cruz,
́
R. S.; Guerreiro, M. C.; Mandelli, D.; Spinace, E. V.; Pires, E. L.
Cyclohexane oxidation continues to be a challenge. Appl. Catal., A
2001, 211, 1−17.
(54) Transition Metals for Organic Synthesis: Building Blocks and Fine
Chemicals, 2nd ed.; Beller, M., Bolm, C., Eds.; Wiley-VCH: Weinheim,
Germany, 2004.
(55) Shul’pin, G. B.; Nizova, G. V. Formation of alkyl peroxides in
oxidation of alkanes by H2O2 catalyzed by transition metal complexes.
React. Kinet. Catal. Lett. 1992, 48, 333−338.
M
Inorg. Chem. XXXX, XXX, XXX−XXX