10.1002/chem.202101447
Chemistry - A European Journal
FULL PAPER
chemistry such reactions are often performed in the presence of
metal-ion catalysts, pointing out a potential function of the
predicted copper-dependent TerE.[52,53] Decarboxylation after
rearrangement would give terrein 1 after tautomerisation.
Keywords: 6-hydroxymellein • oxidative decarboxylation • flavin-
dependent monooxygenase • terrein • cryptosporiopsin
A similar rearrangement mechanism could be envisaged
References
during the biosynthesis of cryptosporiopsin 5 (Scheme 3B).
Chlorination of C-4, however, in this case, prevents an identical
mechanism. Here, 3-methoxy hydroquinone 30 could oxidise to
benzoquinone 31. Rearrangement of 31 by a benzilic acid
reaction would also lead to ring-contraction, but via extrusion of
C-3. This is consistent with the observed labelling pattern. Early
[1]
[2]
H. Raistrick, G. Smith, Biochem. J. 1935, 29, 606–11.
T. O. Larsen, J. Smedsgaard, K. F. Nielsen, M. A. E. Hansen, R. A.
Samson, J. C. Frisvad, Med. Mycol. 2007, 45, 225–232.
C. Zaehle, M. Gressler, E. Shelest, E. Geib, C. Hertweck, M. Brock,
Chem. Biol. 2014, 21, 719–731.
J. C. Lee, M. K. Yu, R. Lee, Y. H. Lee, J. G. Jeon, M. H. Lee, E. C.
Jhee, I. D. Yoo, H. K. Yi, J. Endod. 2008, 34, 433–437.
M. Arakawa, T. Someno, M. Kawada, D. Ikeda, J. Antibiot. (Tokyo).
2008, 61, 442–448.
[3]
[4]
[5]
[6]
methylation of O-3 would create
a
methyl ester after
rearrangement and thereby prevent the decarboxylation which
must occur during the rearrangement on the route to 1. Again,
DFT calculations (ESI section 2.14) suggest this type of
mechanism would be feasible.
S. H. Park, D. S. Kim, W. G. Kim, I. J. Ryoo, D. H. Lee, C. H. Huh,
S. W. Youn, I. D. Yoo, K. C. Park, Cell. Mol. Life Sci. 2004, 61,
2878–2885.
[7]
B. Kim, J. S. Park, H. Y. Choi, S. S. Yoon, W. G. Kim, Sci. Rep.
2018, 8, 8617.
[8]
A. J. Birch, A. Cassera, A. R. Jones, Chem. Commun. 1965, 9,
167–168.
[9]
R. A. Hill, R. H. Carter, J. Staunton, J. Chem. Soc. Perkin Trans. 1
1981, 2570–2576.
L. Kahlert, M. Villanueva, R. J. Cox, E. J. Skellam, Angew. Chemie
Int. Ed. 2021, 60, 11423–11429.
Y. Honmura, S. Uesugi, H. Maeda, K. Tanaka, T. Nehira, K. ichi
Kimura, M. Okazaki, M. Hashimoto, Tetrahedron 2016, 72, 1400–
1405.
Conclusion
[10]
[11]
The biosynthesis of terrein 1 and related compounds such as 5
and 6 has remained mysterious for more than 85 years. Despite
the recent discovery of the BGC and molecular studies involving
gene knockouts that confirmed the intermediacy of 6-
hydroxymellein 2, no more details on their biosynthesis could be
found. Here we have advanced knowledge in this area by another
small step. The FMO TerC (and its homologs) are involved in the
oxidative decarboxylation which removes C-1 early in the
biosynthesis, and this seems to be the last step in common
between the terrein and (poly)chlorinated pentenone pathways.
However we have not identified the origin of the required
dehydration, but our studies suggest this must also occur early in
the pathways. The highly oxygenated intermediates produced by
TerC and TerD are unstable and difficult to characterise, but if 1
or 5 had been formed they would have been detected. The lack
of these compounds suggests the likely importance of early
dehydration. It is noteworthy that while our approach to
[12]
[13]
T. Matsumoto, T. Hosoya, H. Tomoda, M. Shiro, H. Shigemori,
Chem. Pharm. Bull. 2011, 59, 1559–1561.
G. M. Strunz, A. S. Court, J. Komlossy, M. A. Stillwell, Can. J.
Chem. 1969, 47, 2087–2094.
D. Giles, W. B. Turner, J. Chem. Soc. C Org. 1969, 0, 2187–2189.
R. J. J. C. Lousberg, Y. Tirilly, M. Moreau, Experientia 1976, 32,
331–332.
E. L. F. Ferreira, D. E. Williams, L. P. Ióca, R. P. Morais-Urano, M.
F. C. Santos, B. O. Patrick, L. M. Elias, S. P. Lira, A. G. Ferreira, M.
R. Z. Passarini, et al., Org. Lett. 2015, 17, 5152–5155.
T. Ugai, A. Minami, S. Tanaka, T. Ozaki, C. Liu, H. Shigemori, M.
Hashimoto, H. Oikawa, ChemBioChem 2020, 21, 360–367.
J. S. E. Holker, K. Young, J. Chem. Soc. Chem. Commun. 1975, 0,
525–526.
L. O. Zamir, C. C. Chin, Bioorg. Chem. 1982, 11, 338–349.
D.-S. Tian, E. Kuhnert, J. Ouazzani, D. Wibberg, J. Kalinowski, R. J.
Cox, Chem. Sci. 2020, 11, 12477–12484.
C. Schotte, L. Li, D. Wibberg, J. Kalinowski, R. J. Cox, Angew.
Chemie - Int. Ed. 2020, 59, 23870–23878.
L. Kahlert, C. Schotte, R. J. Cox, Synthesis, 2021, DOI 10.1055/a-
1401-2716.
T. Carver, S. R. Harris, M. Berriman, J. Parkhill, J. A. McQuillan,
Bioinformatics 2012, 28, 464–469.
K. A. K. Pahirulzaman, K. Williams, C. M. Lazarus, in Methods
Enzymol., Academic Press Inc., 2012, pp. 241–260.
M. C. Tang, Y. Zou, K. Watanabe, C. T. Walsh, Y. Tang, Chem.
Rev. 2017, 117, 5226–5333.
T. Wilke, M. Schneider, K. Kleinermanns, Open J. Phys. Chem.
2013, 03, 97–102.
J. Goutam, G. Sharma, V. K. Tiwari, A. Mishra, R. N. Kharwar, V.
Ramaraj, B. Koch, Front. Microbiol. 2017, 8, 1334.
M. Gressler, P. Hortschansky, E. Geib, M. Brock, Front. Microbiol.
2015, 6, 184.
K. Blin, S. Shaw, K. Steinke, R. Villebro, N. Ziemert, S. Y. Lee, M.
H. Medema, T. Weber, Nucleic Acids Res. 2019, 47, W81–W87.
M. Stanke, B. Morgenstern, Nucleic Acids Res. 2005, 33, W465–
W467.
V. Solovyev, P. Kosarev, I. Seledsov, D. Vorobyev, Genome Biol.
2006, 7, S10.
P. Jones, D. Binns, H.-Y. Chang, M. Fraser, W. Li, C. McAnulla, H.
McWilliam, J. Maslen, A. Mitchell, G. Nuka, et al., Bioinformatics
2014, 30, 1236—1240.
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]
[31]
[32]
sequentially
reconstitute
fungal
secondary
metabolite
biosynthetic pathways by heterologous expression in A. oryzae
NSAR1 is usually very expedient and reliable, it was not able to
decipher the final transformation during the biosynthesis of 1 and
5.[20,43,49,54,55] Inexplicably TerD seems inactive in heterologous
expression experiments in A. oryzae, although it is active in vitro.
We propose that polyhydroxylated intermediates probably
form quinones and then benzilic acid type rearrangements could
connect the biosynthesis of terrein 1 and the related compounds
such as 5. However, we have so-far failed to discover the
catalysts involved in the key dehydration and rearrangement
steps and it is clear that significantly more work will have to be
done to finally elucidate these steps.
Acknowledgements
[33]
[34]
[35]
[36]
[37]
J. Liu, M. Chen, R. Chen, K. Xie, D. Chen, S. Si, J. Dai, J. Chinese
Pharm. Sci. 2020, 29, 244–251.
E. Romero, J. R. Gómez Castellanos, G. Gadda, M. W. Fraaije, A.
Mattevi, Chem. Rev. 2018, 118, 1742–1769.
A. H. Westphal, D. Tischler, W. J. H. van Berkel, Arch. Biochem.
Biophys. 2021, 702, 108820.
A. G. Newman, C. A. Townsend, J. Am. Chem. Soc. 2016, 138,
4219–4228.
J. Hu, F. Sarrami, H. Li, G. Zhang, K. A. Stubbs, E. Lacey, S. G.
Stewart, A. Karton, A. M. Piggott, Y. H. Chooi, Chem. Sci. 2019, 10,
1457–1465.
Matthias Brock is thanked for the gift of Aspergillus terreus
SBUG844. LK was funded by DFG (CO 1328/5-1). MH is funded
by DFG (CO 1328 / 9-1). DFG is thanked for the provision of
LCMS (DFG, INST 187/621-1,) and NMR (INST 187/686-1)
instrumentation. RGSB, DIB and LPI were funded by FAPESP
(2013/50228-8, 2019/17721-9, 2016/21341-9, 2020/11691-8,
2018/10742-8, 2016/05133-7).
[38]
T. H. James, J. M. Snell, A. Weissberger, J. Am. Chem. Soc. 1938,
8
This article is protected by copyright. All rights reserved.