10.1002/anie.201900342
Angewandte Chemie International Edition
COMMUNICATION
D by H2O2 then generates the silanol product and the active
intermediate A, restarting the catalysis.
(b) J. A. Cella, J. C. Carpenter, J. Organomet. Chem. 1994, 480, 23-26.
(a) N. Duffaut, R. Calas, J.-C. Macé, Bull. Chem. Soc. Fr. 1959, 1971-
1973; (b) P. D. Lickiss, R. Lucas, J. Organomet. Chem. 1995, 521, 229-
234; (c) K. Valliant-Saunders, E. Gunn, G. R. Shelton, D. A. Hrovat, W.
T. Borden, J. M. Mayer, Inorg. Chem. 2007, 46, 5212-5219; (d) W.
Adam, R. Mello, R. Curci, Angew. Chem. 1990, 102, 916-917; Angew.
Chem. Int. Ed. 1990, 29, 890-891; (e) L. H. Sommer, L. A. Ulland, G. A.
Parker, J. Am. Chem. Soc. 1972, 94, 3469-3471; (f) M. Cavicchioli, V.
Montanari, G. Resnati, Tetrahedron Lett. 1994, 35, 6329-6330; (g) L.
Spialter, J. D. Austin, J. Am. Chem. Soc. 1965, 87, 4406; (h) L. Spialter,
L. Pazdernik, S. Bernstein, W. A. Swansiger, G. R. Buell, M. E.
Freeburger, J. Am. Chem. Soc. 1971, 93, 5682-5686;
[8]
[9]
(a) M. Shi, M. J. Nicholas, Chem. Res. 1997, 400-401; (b) U. Schubert,
C. Lorenz, Inorg. Chem. 1997, 36, 1258-1259; (c) E. A. Ison, R. A.
Corbin, M. M. Abu-Omar, J. Am. Chem. Soc. 2005, 127, 11938-11939;
(d) M. Lee, S. Ko, S. Chang, J. Am. Chem. Soc. 2000, 122, 12011-
12012; (e) G. H. Barnes, N. E. Daughenbaugh J. Org. Chem. 1966, 31,
885-887; (f) Y. Lee, D. Seomoon, S. Kim, H. Han, S. Chang, P. H. Lee,
J. Org. Chem. 2004, 69, 1741-1743; (g) T. Mitsudome, A. Noujima, T.
Mizugaki, K. Jitsukawa, K. Kaneda, Chem. Commun. 2009, 5302-5304;
(h) N. Asao, Y. Ishikawa, N. Hatakeyama, Menggenbateera; Y.
Yamamoto, M. Chen, W. Zhang, A. Inoue, Angew. Chem. 2010, 122,
10291; Angew. Chem., Int. Ed. 2010, 49, 10093-10095; (i) J. John, E.
Gravel, A. Hagege, H. Li, T. Gacoin, E. Doris, Angew. Chem. 2011, 123,
7675; Angew. Chem. Int Ed. 2011, 50, 7533-7536; (j) T. Mitsudome, S.
Arita, H. Mori, T. Mizugaki, K. Jitsukawa, K.Kaneda, Angew. Chem.
2008, 120, 8056-8058; Angew. Chem. Int. Ed. 2008, 47, 7938-7940; (k)
Y. Kikukawa, Y. Kuroda, K. Yamaguchi, N. Mizuno, Angew. Chem.
2012, 124, 2484; Angew. Chem., Int. Ed. 2012, 51, 2434-2437.
Scheme 5. Proposed mechanism for the 1-catalyzed oxidation
of hydrosilanes.
In conclusion, by harnessing the remakrable catalytic
activity of the electrion-rich manganese complex 1, we have
realized the highly efficient oxidation of organosilanes to
silanols with H2O2 under neutral conditions.
A series of
[10] (a) W. Adam, H. Garcia, C. M. Mitchell, C. R. Saha-Moller, O. Weichold,
Chem. Commun. 1998, 2609-2610; (b) W. Adam, A. Corma, H. García,
O. J. Weichold, Catal. 2000, 196, 339-344; (c) W. Adam, C. M. Mitchell,
Saha- C. R.Moller, O. Weichold, J. Am. Chem. Soc. 1999, 121, 2097-
2103; (d) W. Adam, C. R. Saha-Moller, O. Weichold, J. Org. Chem.
2000, 65, 2897-2899; (e) Y. Okada, M. Oba, A. Arai, K. Tanaka, K.
Nishiyama, W. Ando, Inorg. Chem. 2010, 49, 383-385; (f) R. Ishimoto,
K. Kamata, N. Mizuno, Angew. Chem. 2009, 121, 9062-9066; Angew.
Chem. Int. Ed. 2009, 48, 8900–8904.
hydrosilanes and dihydrosilanes were oxidized to silanols and
silandiols, respectively, with excellent isolated yields and no
waste byproduct formation in a short reaction time. Preliminary
mechanistic studies suggest that the oxidation may proceed via
a concert reaction of a Mn(III)-OOH species with the hydrosilane.
Further investigation is in progress.
[11] D. Limnios, C.G. Kokotos, ACS Catal. 2013, 3, 2239-2243.
[12] (a) X. Engelmann, I. Monte-Perez, K. Ray, Angew.Chem. 2016, 128,
7760-7778; Angew.Chem. Int. Ed.2016, 55,7632-7649; (b) M. Milan, M.
Salamone, M. Costas, M. Bietti, Acc Chem Res 2018, 51,1984-1995.
[13] (a) Y. Liu, C. Wang, D. Xue, M. Xiao, C. Li, J. Xiao, Chem. –Eur. J.,
2017, 23, 3051-3061; (b) Y. Liu, C. Wang, D. Xue, M. Xiao, J. Liu, C. Li,
J. Xiao, Chem. – Eur. J., 2017, 23, 3062-3066;(c) A. Gonzalez-de-
Castro, C. M. Robertson, J. Xiao, J. Am. Chem. Soc. 2014, 136,8350-
8360; d) A. Gonzalez-de-Castro, J. Xiao, J. Am. Chem. Soc. 2015, 137,
8206-8218.
[14] The KIE may be estimated from the remaining 2a and 2a-D. The low
yield of 3a-OD is due to H-D exchange with water in the system.
[15] (a) G. Yin, M. Buchalova, A. M. Danby, C. M. Perkins, D. Kitko, J. D.
Carter, W. M. Scheper, D. H. Busch, J. Am. Chem. Soc., 2005, 127,
17170-17171; (b) W. D. Kerber, B. Ramdhanie, D. P. Goldberg, Angew.
Chem. Int. Ed. 2007, 46, 3718-3721; Angew. Chem. 2007, 119, 3792.
[16] Following the suggestion of a reviewer, we also carried out the 1-
catalyzed oxidation of 2a using the single oxygen atom donors tBuOOH,
CH3C(O)OOH and PhIO under the optimized conditions (Table 1). The
former two oxidants afforded 99% yield (GC) of 3a; but no oxidation
was observed with PhIO (Table B, SI). These results appear to be
supportive of the concerned mechanism suggested.
Acknowledgements
We gratefully acknowledge the financial support by the
Fundamental Research Funds for the Central University
(GK201603052), start-up funds from Shaanxi Normal University,
Shaanxi Provincial Natural Science Foundation (2017JM2002),
and the Program for Changjiang Scholars and Innovative
Research Team in University (IRT_14R33), and the 111 project
(B14041).
Keywords: silanols • silandiols • hydrosilanes • catalytic
oxidation • manganese complex
[1]
(a) M. Jeon, J. Han, J. Park, ACS Catal. 2012, 2, 1539-1549; (b) V.
Chandrasekhar, R. Boomishankar, S. Nagendran, Chem. Rev. 2004,
104, 5847-5910; (c) I. Ojima, Z. Li, J. Zhu, In The Chemistry of Organic
Silicon Compounds; S. Rappoport, Y. Apeloig, Eds.; Wiley: New York,
1998.
[2]
[3]
[4]
(a) R. Murugavel, M. G. Walawalkar, M. Dan, H.W. Roesky, C. N. R.
Rao, Acc. Chem. Res. 2004, 37, 763-774; (b) P. D. Lickiss, Adv. Inorg.
Chem. 1995, 42, 147-262.
(a) A. K. Franz, S. O. Wilson, J. Med. Chem. 2013, 56, 388-405; (b) R.
Tacke, In Organosilicon and Bioorganosilicon Chemistry; H. Sakurai,
Ed.; John Wiley & Sons: New York, 1985.
(a) M. Parasram, V. Gevorgyan, Acc. Chem. Res. 2017, 50, 2038-2053;
(b) M. Mewald, J. A. Schiffner, M. Oestreich, Angew.Chem. 2012,
124,1797-1799; Angew. Chem., Int. Ed. 2012, 51, 1763-1765; (c) C.
Huang, B. Chattopadhyay, V. Gevorgyan, J. Am. Chem. Soc. 2011, 133,
12406-12409;
[5]
(a) S. E. Denmark, A. Ambrosi, Org. Process Res. Dev. 2015, 19,
982-994; (b) M. Mewald, J. A. Schiffner, M. Oestreich, Angew.Chem.
2012, 124, 1797-1799; Angew. Chem. Int. Ed. 2012, 51,1763-1765; (c)
S. E. Denmark, C. S. Regens, Acc. Chem. Res. 2008, 41, 1486-1499;
(d) S. E. Denmark, R. F. Sweis, In Metal-Catalyzed Cross-Coupling
Reactions; A. de Meijere, F. Diederich, Eds; Wiley-VHC: Weinheim,
Germany, 2004.
[6]
[7]
(a) K. M. Diemoz, J. E. Hein, S. O. Wilson, J. C. Fettinger, A. K. Franz,
J. Org. Chem. 2017, 82, 6738-6747; (b) T. Min, J. C. Fettinger, A. K.
Franz, ACS Catal. 2012, 2, 1661-1666; (c) K. Motokura, N. Fujita, K.
Mori, T. Mizugaki, K. Ebitani, K. Jitsukawa, K. Kaneda, Chem. -Eur. J.
2006, 12, 8228-8239.
a) E. G. Rochow,W. F. Gilliam, J. Am. Chem. Soc. 1941, 63, 798-800;
This article is protected by copyright. All rights reserved.