2940
J. Am. Chem. Soc. 1997, 119, 2940-2941
solution during hydrogenation of (Z)-methyl R-acetamidocin-
namate (MAC) catalyzed by a Ru-BINAP compound.We
recently reported the synthesis and the catalytic activity of [Ru-
((R)-BINAP)(H)(MeCN)(sol)2](BF4) (1, sol ) MeOH or THF).5
Compound 1 catalyzed the hydrogenation of MAC in methanol
solutions to generate N-acetylphenylalanine methyl ester (MACH2)
in 86% ee (R) (eq 1).5 This enantioselectivity is comparable to
those of other Ru-BINAP complexes.1a,4e
The First Structure Determination of a Possible
Intermediate in Ruthenium
2,2′-Bis(diphenylphosphino)-1,1′-binaphthyl
Catalyzed Hydrogenation with a Prochiral Group
Bound to Ruthenium. Stoichiometric Reaction of a
Chiral Ruthenium-Carbon Bond with Dihydrogen
Gas
Jason A. Wiles and Steven H. Bergens*
Department of Chemistry, UniVersity of Alberta
Edmonton, Alberta T6G 2G2, Canada
Victor G. Young
We found that the stoichiometric reaction between MAC and
1 in acetone at room temperature resulted in rapid formation of
a predominant species (2, >99%) in solution (eq 2). 31P NMR
spectra recorded under conditions similar to those of the catalytic
reaction (ambient temperature, 2 mol % of 1, MeOH solution,
pressure H2 ≈ 2 atm) showed that 2 was the predominant species
in solution during the catalytic hydrogenation.6 NMR suggested
X-ray Crystallographic Laboratory, 160 Kolthoff Hall
Chemistry Department, 207 Pleasant St. S.E.
The UniVersity of Minnesota
Minneapolis, Minnesota 55455
ReceiVed NoVember 20, 1996
Complexes of Ru(II) and 2,2′-bis(diphenylphosphino)-1,1′-
binaphthyl (BINAP) comprise the most effective catalyst
systems developed for the enantioselective hydrogenation of
prochiral olefins and ketones. Nearly 200 reports1 describing
these reactions, including several industrial syntheses, have
appeared since the first examples were disclosed in 1985 and
1986.2 Despite the intense study of these systems, there are no
reports of structural characterization (even using spectroscopy)3
of a species with a prochiral olefin or ketone bound to a Ru
center. The structures of the catalytic intermediates (and
therefore the origins of enantioselection) are speculative as they
have been inferred from indirect methodssisotopic labeling,
olefin isomerizations, and kinetic studies.4 We now report the
first isolation, structural characterization, and reaction with
dihydrogen gas of the major Ru-containing species present in
that 2 resulted from transfer of the hydride in 1 to the â-olefinic
carbon of MAC and transfer of Ru to the R-carbon to form a
5-membered metallacycle. Further, the signal in the 13C{1H}
NMR spectrum of 2 for the R-carbon showed cis- and trans-
2
2
coupling (δ 67.3, JCPcis ) 3.9 Hz, JCPtrans ) 42.2 Hz) to the
phosphorus nuclei, suggesting that the R-carbon was coordinated
to Ru in the plane containing the phosphine groups. The 13C
signals for the amido and the ester carbonyl groups were also
coupled to the phosphorus nuclei, suggesting that these groups
were coordinated to Ru as well. Rh(III) and Ir(III) alkyl hydride
compounds that are related to 2 have been spectroscopically
characterized by Halpern and Brown.7,8
* Author to whom correspondence should be addressed at (403)-492-
9703 (voice), (403)-492-8231 (fax), or Steve.Bergens@UAlberta.CA (e-
mail).
(1) (a) Takaya, H.; Ohta, T.; Noyori, R. In Catalytic Asymmetric
Synthesis; Ojima, I., Ed.;VCH Publishers: New York, 1993; p 1. (b) Noyori,
R. In Aymmetric Catalysis in Organic Synthesis; Wiley-Interscience, John
Wiley & Sons: New York, 1994; p 16. For recent examples, see: (c)
Kitamura, M.; Tokunaga, M.; Noyori, R. J. Am. Chem. Soc. 1993, 115,
144. (d) Mezzetti, A.; Costella, L.; Del Zotto, A.; Rigo, P. Gazz. Chim.
Ital. 1993, 123, 155. (e) Hoke, J. B.; Hollis, L. S.; Stern, E. W. J. Organomet.
Chem. 1993, 455, 193. (f) Manimaran, T.; Wu, T.-C.; Kolbucar, W. D.;
Kolich, C. H.; Stahly, G. P.; Fronczek, F. R.; Watkins, S. E. Organometallics
1993, 12, 1467. (g) Chiba, T.; Miyashita, A.; Nohira, H. Tetrahedron Lett.
1993, 34, 2351. (h) Wan, K.-t.; Davis, M. E. Tetrahedron Asymmetry 1993,
4, 2461. (i) Chan, A. C. S.; Laneman, S. Inorg. Chim. Acta 1994, 223,
165. (j) Kitamura, M.; Hsiao, Y.; Ohta, M.; Tsukamoto, M.; Ohta, T.;
Takaya, H.; Noyori, R. J. Org. Chem. 1994, 59, 297. (k) Geneˆt, J. P.; Pinel,
C.; Ratovelomanana-Vidal, V.; Mallart, S.; Pfister, X.; Can˜o De Andrade,
M. C.; Laffitte, J. A. Tetrahedron Asymmetry 1994, 5, 665. (l) Geneˆt, J. P.;
Pinel, C.; Ratovelomanana-Vidal, V.; Mallart, S.; Pfister, X.; Bischoff, L.;
Can˜o De Andrade, M. C.; Darses, S.; Galopin, C.; Laffitte, J. A. Tetrahedron
Asymmetry 1994, 5, 675. (m) Masima, K.; Kusano, K.-h.; Sato, N.;
Matsumura, Y.-i.; Nozaki, K.; Kumobayashi, H.; Sayo, N.; Hori, Y.;
Ishizaki, T.; Akutagawa, S.; Takaya, H. J. Org. Chem. 1994, 59, 3064. (n)
Chan, A. C. S.; Chen, C. C.; Yang, T. K.; Huang, J. H.; Lin, Y. C. Inorg.
Chim. Acta 1995, 234, 95. (o) Geneˆt, J. P.; Ratovelomanana-Vidal, V.; Can˜o
De Andrade Tetrahedron Lett. 1995, 36, 2063. (p) Ohkuma, T.; Ooka, H.;
Hashiguchi, S.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. 1995, 117, 2675.
(q) Kitamura, M.; Tokunaga, M.; Noyori, R. J. Am. Chem. Soc. 1995, 117,
2931. (r) Burke, M. J.; Harper, G. P.; Kalberg, C. S. J. Am. Chem. Soc.
1995, 117, 4423. (s) Geneˆt, J. P.; Ratovelomanana-Vidal, V.; Can˜o De
Andrade, M. C.; Pfister, X.; Guerreiro, P.; Lenoir, J. Y. Tetrahedron Lett.
1995, 36, 4801. (t) Sun, Y.; LeBlond, C.; Wang, J.; Blackmond, D. G.;
Laquidara, J.; Sowa, J. R., Jr. J. Am. Chem. Soc. 1995, 117, 12647. (u)
Ohta, T.; Tonomura, Y.; Nozaki, K.; Takaya, H.; Mashima, K. Organo-
metallics 1996, 15, 1521.
(3) There have been several reports of observations of unidentified species
by NMR spectroscopy. (a) Saburi, M.; Takeuchi, H.; Ogasawara, M.;
Tsukahara, T.; Ishii, Y.; Ikariya, T.; Takahashi, T.; Uchida, Y. J. Organomet.
Chem. 1992, 428, 155. (b) King, S. A.; DiMichele, L. In Catalysis of
Organic Reactions, Chemical Industries; Scaros, M. G., Prunier, M. L.,
Eds.; Marcel Dekker, Inc.: New York, 1995; Vol. 62, p 157. For a crystal
structure of ∆-bis(tiglato)[(R)-2,2′-bis(diphenylphosphino)-1,1′-binaphthyl]-
ruthenium(II), see: Ashby, M. T.; Khan, M. A.; Halpern, J. Organometallics
1991, 10, 2011. The prochiral olefins were not bound to the Ru center of
this complex.
(4) (a) Saburi, M.; Takeuchi, H.; Ogasawara, M.; Tsukahara, T.; Ishii,
Y.; Ikariya, T.; Takahashi, T.; Uchida, Y. J. Organomet. Chem. 1992, 428,
155. (b) Ashby, M. T.; Halpern, J. J. Am. Chem. Soc. 1991, 113, 589. (c)
Chan, A. S. C.; Chen, C. C.; Yang, T. K.; Huang, J. H.; Lin, Y. C. Inorg.
Chim. Acta 1995, 234, 95. (d) Ohta, T.; Takaya, H.; Noyori, R. Tetrahedron
Lett. 1990, 31, 7189. (e) Kawano, H.; Ikariya, T.; Ishii, Y.; Saburi, M.;
Yoshikawa, S.; Uchida, Y.; Kumobayashi, H. J. Chem. Soc., Perkin Trans.
1 1989, 1571. (f) Brown, J. M. Chem. Soc. ReV. 1993, 25. For mechanistic
studies attending use of other ruthenium-phosphine complexes as catalysts,
see: (g) James, B. R.; McMillan, R. S.; Morris, R. H.; Wang, D. K. W.
AdV. Chem. Ser. 1978, 167, 122. (h) James, B. R.; Wang, D. K. W. Can.
J. Chem. 1980, 58, 245. (i) Jardine, F. H. Prog. Inorg. Chem. 1984, 31,
265. (j) Dekleva, T. W.; Thorburn, I. S.; James, B. R. Inorg. Chim. Acta
1985, 100, 49.
(5) Wiles, J. A.; Lee, C. E.; McDonald, R.; Bergens, S. H. Organome-
tallics 1996, 15, 3782.
(6) Because of the low [Ru], 5000 scans were required to obtain a
reasonable 31P NMR spectrum. A spectrum recorded 1.5 h after mixing
(after approximately 8 turnovers) showed 2 as the predominant species in
solution.
(2) Ikariya, T.; Ishii, Y.; Kawano, H.; Arai, T.; Saburi, M.; Yoshikawa,
S.; Akutagawa, S. J. Chem. Soc., Chem. Commun. 1985, 992. Noyori, R.;
Ohta, M.; Hsiao, Y.; Kitamura, M.; Ohta, T.; Takaya, H. J. Am. Chem.
Soc. 1986, 108, 7117.
(7) Brown, J. M.; Chaloner, P. A. J. Chem. Soc., Chem. Commun. 1980,
344.
S0002-7863(96)04014-0 CCC: $14.00 © 1997 American Chemical Society