Inorganic Chemistry
Article
(5) Arnold, J.; Tilley, T. D. Ether Cleavage Following Insertion of
Carbon Monoxide into the Tantalum-Silicon Bond of (H5-C5Me5)-
Ta(SiMe3)Cl3. J. Am. Chem. Soc. 1985, 107 (22), 6409−6410.
(6) Weissman, S. A.; Zewge, D. Recent Advances in Ether
Dealkylation. Tetrahedron 2005, 61 (33), 7833−7863.
(7) Suzuki, A.; Hara, S.; Huang, X. Boron Tribromide. In
Encyclopedia of Reagents for Organic Synthesis; John Wiley & Sons,
Ltd: Chichester, UK, 2006.
(8) Hart, W. E. S.; Aldous, L.; Harper, J. B. Cleavage of Ethers in an
Ionic Liquid. Enhancement, Selectivity and Potential Application. Org.
Biomol. Chem. 2017, 15 (26), 5556−5563.
(9) Saadati, F.; Meftah-Booshehri, H. Antimony(V) Chloride as an
Efficient Reagent for Deprotection of Methyl Ethers. Synlett 2013, 24
(13), 1702−1706.
(10) Chatterjee, M.; Ishizaka, T.; Suzuki, A.; Kawanami, H. An
Efficient Cleavage of the Aryl Ether C−O Bond in Supercritical
Carbon Dioxide−water. Chem. Commun. 2013, 49 (40), 4567.
(11) Nam, S.-Y.; Han, D.-S.; Lee, W.-K. The First Example of Cation
Radical Induced Ether Cleavage of Benzyl Phenyl Ether. Bull. Korean
Chem. Soc. 2010, 31 (6), 1467−1468.
(12) Nichols, J. M.; Bishop, L. M.; Bergman, R. G.; Ellman, J. A.
Catalytic C-O Bond Cleavage of 2-Aryloxy-1-Arylethanols and Its
Application to the Depolymerization of Lignin-Related Polymers. J.
Am. Chem. Soc. 2010, 132 (36), 12554−12555.
(13) Nau, A.; Kohl, S.; Zanthoff, H. W.; Wiederhold, H.; Vogel, H.
Ozonized Activated Carbon as Catalyst for MTBE-Cleavage. Appl.
Catal., A 2011, 397 (1−2), 103−111.
Through kinetic observations and substrate reactivity
patterns, the deoxygenation reaction normally takes place
through two successive trans-etherification steps, where the
first C−O bond is activated to form benzyl chloride and a silyl
ether with SiCl4. The other C−O bond is activated in the same
way, although these steps occur at different rates for
asymmetric ethers. Although no formal redox transformations
occur throughout the catalytic cycle, the redox-active ligand
enables these steps to take place by changing its geometry and
electron donation to the niobium.
Ongoing work is aimed at exploring further halogenation
reactions using SiCl4 as a convenient, inexpensive halogen
source, further examining the mechanism of the steps and its
applicability to other diimine complex reactivities, and
exploring the chemistry of analogous complexes of vanadium
and other metals, as they may show different redox behavior at
the metal.
ASSOCIATED CONTENT
■
S
* Supporting Information
The Supporting Information is available free of charge on the
Catalyst screening and reaction condition optimization,
interactions of complex 1a with benzyl ether, benzyl-O-
SiCl3 intermediate (C) spectra, kinetic studies and one-
pot Hammett analysis, NMR spectra of catalytic reaction
mixtures or products, experimental section (PDF)
(14) Nefedov, S. E.; Kushan, E. V.; Yakovleva, M. A.; Chikhichin, D.
G.; Kotseruba, V. A.; Levchenko, O. A.; Kamalov, G. L. Binuclear
Complexes with the “Chinese Lantern” Geometry as Intermediates in
the Liquid-Phase Oxidation of Dibenzyl Ether with Atmospheric
Oxygen in the Presence of Copper(II) Carboxylates. Russ. J. Coord.
Chem. 2012, 38 (3), 224−231.
(15) Costello, J. F.; Draffin, W. N.; Paver, S. P. Bi(III) Catalysed O-
Acylative Cleavage of 2,5-Dimethyltetrahydrofuran: A Substrate
Dependent Borderline Mechanism. Tetrahedron 2005, 61 (28),
6715−6719.
(16) Coles, S. J.; Costello, J. F.; Draffin, W. N.; Hursthouse, M. B.;
Paver, S. P. Bi(III) Halides as Efficient Catalysts for the O-Acylative
Cleavage of Tetrahydrofurans: An Expeditious Entry to Tetralins.
Tetrahedron 2005, 61 (18), 4447−4452.
(17) Pri-Bar, I.; Stille, J. K. Acylative Cleavage of Ethers Catalyzed
by Triorganotin Halides and Palladium(II) Complexes. J. Org. Chem.
1982, 47 (7), 1215−1220.
AUTHOR INFORMATION
■
Corresponding Authors
ORCID
(18) Fotie, J.; Adolph, B. R.; Bhatt, S. V.; Grimm, C. C.
Palladium(II) Acetate Catalyzed Acylative Cleavage of Cyclic and
Acyclic Ethers under Neat Conditions. Tetrahedron Lett. 2017, 58
(49), 4648−4651.
(19) Bortoluzzi, M.; Marchetti, F.; Pampaloni, G.; Zacchini, S.
Reactivity of [WCl6] with Ethers: A Joint Computational,
Spectroscopic and Crystallographic Study. Eur. J. Inorg. Chem. 2016,
2016 (19), 3169−3177.
(20) Jung, M. E.; Lyster, M. A. Quantitative Dealkylation of Alkyl
Ethers via Treatment with Trimethylsilyl Iodide. A New Method for
Ether Hydrolysis. J. Org. Chem. 1977, 42 (23), 3761−3764.
(21) Jung, M. E.; Martinelli, M. J.; Olah, G. A.; Surya Prakash, G. K.;
Hu, J. Iodotrimethylsilane. In Encyclopedia of Reagents for Organic
Synthesis; John Wiley & Sons, Ltd: Chichester, UK, 2005; Vol. 3, p
533.
(22) Nishiyama, H.; Ikeda, H.; Saito, T.; Kriegel, B.; Tsurugi, H.;
Arnold, J.; Mashima, K. Structural and Electronic Noninnocence of α-
Diimine Ligands on Niobium for Reductive C-Cl Bond Activation
and Catalytic Radical Addition Reactions. J. Am. Chem. Soc. 2017, 139
(18), 6494−6505.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
K.M. acknowledges financial support by JSPS KAKENHI
Grant Numbers 15H05808 and 15K21707 in Precisely
Designed Catalysts with Customized Scaffolding (No. 2702).
J.A. thanks the United States National Science Foundation
(Grant No. CHE-1465188) for support.
REFERENCES
■
(1) Fuhrmann, E.; Talbiersky, J. Synthesis of Alkyl Aryl Ethers by
Catalytic Williamson Ether Synthesis with Weak Alkylation Agents.
Org. Process Res. Dev. 2005, 9 (2), 206−211.
(2) Mandal, S.; Mandal, S.; Ghosh, S. K.; Sar, P.; Ghosh, A.; Saha,
R.; Saha, B. A Review on the Advancement of Ether Synthesis from
Organic Solvent to Water. RSC Adv. 2016, 6 (73), 69605−69614.
(3) Science of Synthesis: Category 5, Compounds with One Saturated
Carbon Heteroatom Bond; Forsyth, G., Ed.; Thieme Verlag: Stuttgart,
2008.
(23) Tsurugi, H.; Saito, T.; Tanahashi, H.; Arnold, J.; Mashima, K.
Carbon Radical Generation by D0 Tantalum Complexes with α-
Diimine Ligands through Ligand-Centered Redox Processes. J. Am.
Chem. Soc. 2011, 133 (46), 18673−18683.
(4) Blanksby, S. J.; Ellison, G. B. Bond Dissociation Energies of
Organic Molecules. Acc. Chem. Res. 2003, 36 (4), 255−263.
F
Inorg. Chem. XXXX, XXX, XXX−XXX