Angewandte
Chemie
[7] a) S. J. Danishefsky, J. R. Allen, Angew. Chem. 2000, 112, 882 –
to large-scale synthesis. Sialyltransferases, together with sialic
acid aldolases and CMP-sialic acid synthetases, are important
tools for simple and efficient preparation of sialoside libraries.
These structurally defined synthetic sialosides will be essen-
tial standards for developing analytical methods. They are key
probes to elucidate the biological significance of natureꢀs
sialic acid diversity, the biosynthetic and degradation path-
ways of structurally modified sialic acids, and their involve-
ment in the physiological and pathological processes of
human and other vertebrates. The synthetic sialosides are
also important ligands for identifying specific lectins and
producing specific antibodies, which in turn, are vital tools in
histochemical studies of organ- and species-specific presenta-
tion of modified sialic acids.
912; Angew. Chem. Int. Ed. 2000, 39, 836 – 863; b) C. D. Meo,
A. V. Demchenko, G. J. Boons, J. Org. Chem. 2001, 66, 5490 –
5497; c) V. Martichonok, G. M. Whitesides, J. Org. Chem. 1996,
61, 1702 – 1706; d) H. Kondo, Y. Ichikawa, C. H. Wong, J. Am.
Chem. Soc. 1992, 114, 8748 – 8750.
[8] a) O. Blixt, K. Allin, L. Pereira, A. Datta, J. C. Paulson, J. Am.
Chem. Soc. 2002, 124, 5739 – 5746; b) C. H. Wong, R. L. Hal-
comb, Y. Ichikawa, T. Kajimoto, Angew. Chem. 1995, 107, 569 –
593; Angew. Chem. Int. Ed. Engl. 1995, 34, 521 – 546; c) Y.
Kajihara, T. Yamamoto, H. Nagae, M. Nakashizuka, T. Sakaki-
bara, I. Terada, J. Org. Chem. 1996, 61, 8632 – 8635.
[9] a) Y. Ichikawa, J. L. C. Liu, G. J. Shen, C.-H. Wong, J. Am.
Chem. Soc. 1991, 113, 6300 – 6302; b) E. C. Rodriguez, L. A.
Marcaurelle, C. R. Bertozzi, J. Org. Chem. 1998, 63, 7134 – 7135;
c) S. A. Kalovidouris, O. Blixt, A. Nelson, S. Vidal, W. B.
Turnbull, J. C. Paulson, J. F. Stoddart, J. Org. Chem. 2003, 68,
8485– 8493; d) T. K. Mong, H. K. Lee, S. G. Duron, C. H. Wong,
Proc. Natl. Acad. Sci. USA 2003, 100, 797 – 802.
Experimental Section
Preparative scale (50–150 mg) synthesis: Reactions were typically
carried out in a 50 mL centrifuge tube of Tris-Cl buffer solution
(10 mL, 100 mm; pH 8.5or pH 7.5) containing an acceptor (lactose,
GalNAc, or galactose derivatives, 50–100 mg), ManNAc or mannose
derivatives (1.5equiv), sodium pyruvate (7.5equiv), cytidine-5 ’-
triphosphate (CTP; 1.5equiv), MgCl 2 (20 mm), aldolase, NmCSS,
and Pd2,6ST. The reaction mixture was incubated at 258C for 12 h
with shaking (120 rpm). After adding the same volume of ice-cold
methanol to stop the reaction, insoluble material was removed by
centrifugation. The supernatant was concentrated by rotor evapo-
ration and purified by Bio-Gel P2 gel filtration chromatography.
Lyophilized sialoside products were characterized by NMR spectros-
copy and HRMS.
[10] a) C. Butor, S. Diaz, A. Varki, J. Biol. Chem. 1993, 268, 10197 –
10206; b) A. L. Lewis, V. Nizet, A. Varki, Proc. Natl. Acad. Sci.
USA 2004, 101, 11123 – 11128; c) C. Traving, R. Schauer, Cell.
Mol. Life Sci. 1998, 54, 1330 – 1349.
[11] W. F. Vann, T. Y. Liu, J. B. Robbins, J. Bacteriol. 1978, 133, 1300 –
1306.
[12] H. H. Higa, C. Butor, S. Diaz, A. Varki, J. Biol. Chem. 1989, 264,
19427 – 19434.
[13] V. Vandamme-Feldhaus, R. Schauer, J. Biochem. 1998, 124, 111 –
121.
[14] H. H. Higa, A. Varki, J. Biol. Chem. 1988, 263, 8872 – 8878.
[15] R. S. Houliston, H. P. Endtz, N. Yuki, J. Li, H. C. Jarrell, M.
Koga, A. Van Belkum, M.-F. Karwashki, W. W. Wakarchuk, M.
Gilbert, J. Biol. Chem. 2006, 281, 11480 – 11486.
[16] M. Iwersen, V. Vandamme-Feldhaus, R. Schauer, Glycoconju-
gate J. 1998, 15, 895– 904.
Received: February 13, 2006
Keywords: carbohydrates · chemoenzymatic synthesis ·
enzyme catalysis · sialic acids · transferases
[17] J. Tiralongo, H. Schmid, R. Thun, M. Iwersen, R. Schauer,
Glycoconjugate J. 2000, 17, 849 – 858.
[18] A. Kelm, L. Shaw, R. Schauer, G. Reuter, Eur. J. Biochem. 1998,
251, 874 – 884.
[19] T. Kawano, S. Koyama, H. Takematsu, Y. Kozutsumi, H.
Kawasaki, S. Kawashima, T. Kawasaki, A. Suzuki, J. Biol.
Chem. 1995, 270, 16458 – 16463.
[20] H. Yu, H. Yu, R. Karpel, X. Chen, Bioorg. Med. Chem. 2004, 12,
6427 – 6435.
[21] H. Yu, H. Chokhawala, R. Karpel, H. Yu, B. Wu, J. Zhang, Y.
Zhang, Q. Jia, X. Chen, J. Am. Chem. Soc. 2005, 127, 17618 –
17619.
[22] T. Yamamoto, M. Nakashizuka, I. Terada, J. Biochem. 1998, 123,
94 – 100.
.
[1] a) T. Angata, A. Varki, Chem. Rev. 2002, 102, 439 – 469; b) R.
Schauer, Glycoconjugate J. 2000, 17, 485– 499.
[2] a) C. Robbe, C. Capon, E. Maes, M. Rousset, A. Zweibaum, J. P.
Zanetta, J. C. Michalski, J. Biol. Chem. 2003, 278, 46337 – 46348;
b) J. P. Zanetta, A. Pons, M. Iwersen, C. Mariller, Y. Leroy, P.
Timmerman, R. Schauer, Glycobiology 2001, 11, 663 – 676.
[3] M. D. Chappell, R. L. Halcomb, J. Am. Chem. Soc. 1997, 119,
3393 – 3394.
[4] a) G. J. Boons, A. V. Demchenko, Chem. Rev. 2000, 100, 4539 –
4566; b) M. J. Kiefel, M. von Itzstein, Chem. Rev. 2002, 102, 471 –
490.
[5] a) M. Izumi, C. H. Wong, Trends Glycosci. Glycotechnol. 2001,
13, 345; b) J. Thiem, W. Treder, Angew. Chem. 1986, 98, 1100 –
1101; Angew. Chem. Int. Ed. Engl. 1986, 25, 1096 – 1097; c) D. H.
Joziasse, W. E. Schiphorst, D. H. Van den Eijnden, J. A. Van
Kuik, H. Van Halbeek, J. F. Vliegenthart, J. Biol. Chem. 1987,
262, 2025– 2033; d) C. Unverzagt, S. Kelm, J. C. Paulson,
Carbohydr. Res. 1994, 251, 285– 301; e) M. Gilbert, A.-M.
Cunningham, D. C. Watson, A. Martin, J. C. Richards, W. W.
Wakarchuk, Eur. J. Biochem. 1997, 249, 187 – 194.
[23] T. Yamamoto, M. Nakashizuka, H. Kodama, Y. Kajihara, I.
Terada, J. Biochem. 1996, 120, 104 – 110.
[24] a) T. Yamamoto, H. Nagae, Y. Kajihara, I. Terada, Biosci.
Biotechnol. Biochem. 1998, 62, 210 – 214; b) T. Endo, S. Koizumi,
K. Tabata, S. Kakita, A. Ozaki, Carbohydr. Res. 2001, 330, 439 –
443; c) C.-F. Teo, T.-S. Hwang, P.-H. Chen, C.-H. Hung, H.-S.
Gao, L.-S. Chang, C.-H. Lin, Adv. Synth. Catal. 2005, 347, 967 –
972.
[25] A. M. Gil-Serrano, M. A. Rodriguez-Carvajal, P. Tejero-Mateo,
J. L. Espartero, J. Thomas-Oates, J. E. Ruiz-Sainz, A. M. Buen-
dia-Claveria, Biochem. J. 1998, 334, 585 – 594.
[26] A. Kluge, G. Reuter, H. Lee, B. Ruch-Heeger, R. Schauer, Eur. J.
Cell Biol. 1992, 59, 12 – 20.
[27] A. Varki, Glycobiology 1992, 2, 25– 40.
[28] a) H. H. Higa, G. N. Rogers, J. C. Paulson, Virology 1985, 144,
279 – 282; b) G. Herrler, R. Rott, H. D. Klenk, H. P. Muller,
A. K. Shukla, R. Schauer, Embo J. 1985, 4, 1503 – 1506.
[6] a) K. M. Koeller, C. H. Wong, Nature 2001, 409, 232 – 240;
b) H. J. Gross, R. Brossmer, Eur. J. Biochem. 1988, 177, 583 –
589; c) H. H. Higa, J. C. Paulson, J. Weinstein, J. Biol. Chem.
1985, 260, 8838 – 8849; d) Y. Kajihara, T. Ebata, K. Koseki, H.
Kodama, H. Matsushita, H. Hashimoto, J. Org. Chem. 1995, 60,
5732 – 5735.
Angew. Chem. Int. Ed. 2006, 45, 3938 –3944
ꢀ 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
3943