N. J. Baldwin et al. / Tetrahedron Letters 53 (2012) 6946–6949
6949
acetate and was determined to be >98% pure by 1H & 13C NMR
spectroscopy, and 96% pure by GC.
Organic Synthesis, 1st ed.; Blackwell Science, Inc.: Malden, MA, 1999; (c)
Kocienski, P. J. Protecting Groups, 1st ed.; Georg Thieme Verlag: Stuttgart, 1994.
2. Stork, G.; Takahashi, T.; Kawamoto, I.; Suzuki, T. J. Am. Chem. Soc. 1978, 100,
8272.
3. Höfle, G.; Steglich, W.; Vorbrüggen, H. Angew. Chem., Int. Ed. Engl. 1978, 17, 569.
4. (a) Orita, A.; Tanahashi, C.; Kakuda, A.; Otera, J. Angew. Chem., Int. Ed. 2000, 39,
2877; (b) Carrigan, M. D.; Freiberg, D. A.; Smith, R. C.; Zerth, H. M.; Mohan, R. S.
Synthesis 2001, 2091.
Method B (synthesis of an acetate in solvent): A suspension of p-
nitrobenzyl alcohol (0.486 g, 3.18 mmol) and acetic anhydride
(0.421 g, 0.390 mL, 4.13 mmol) in CH3CN (5 mL) was stirred at
room temperature as Fe(OTs)3ꢀ6H2O (43.1 mg, 0.0636 mmol,
2.0 mol %) was added. The progress of the reaction was followed
by gas chromatography. After 45 min, CH3CN was removed on a ro-
tary evaporator, and then aqueous 10% Na2CO3 (5 mL) was added
to the residue and stirred for 10 min. The reaction mixture was ex-
tracted with ethyl acetate (2 ꢂ 20 mL). The combined organic lay-
ers were washed with saturated NaCl (15 mL), dried (Na2SO4) and
concentrated on a rotary evaporator to yield 0.61 g (98%) of a yel-
low solid that was identified as p-nitrobenzyl acetate and was
determined to be 97% pure by GC, 1H NMR, and 13C spectroscopy.
Method C (synthesis of a benzoate): A heterogeneous mixture of
phenethyl alcohol (0.544 g, 4.45 mmol) and benzoic anhydride
(1.51 g, 6.67 mmol) was dissolved in CH3CN (5 mL) as Fe(OTs)3ꢀ6
H2O (151.2 mg, 0.223 mmol, 5.0 mol %) was added. The reaction
mixture was heated at 70 °C (temperature controlled hot plate)
and the progress of the reaction was followed by TLC (EtOAc/hep-
tane, 30/70). After 24 h, the mixture was cooled, acetonitrile was
removed on a rotary evaporator and ethyl acetate (20 mL) was
added to the residue. The resulting solution was washed with
Na2CO3 (2 ꢂ 15 mL) and saturated aqueous NaCl (15 mL). The or-
ganic layer was dried (Na2SO4) and concentrated on a rotary evap-
orator to yield 1.56 g of a yellow orange liquid. NMR spectroscopy
analysis showed that benzoic anhydride was still present in the
crude product. The crude product was purified by flash chromatog-
raphy on silica gel (70 g). A solvent gradient of EtOAc/heptane (10/
90, then 20/80) was used for elution. A total of 45 fractions (8 mL-
size) were collected, and fractions 15–21 were combined to yield
0.74 g (73%) of a very pale yellow clear liquid that was identified
as phenethyl benzoate and was determined to be >98% pure by
1H and 13C NMR spectroscopy.
5. Ishihara, K.; Kubota, M.; Kurihara, H.; Yamamoto, H. J. Am. Chem. Soc. 1995, 117,
4413.
6. Ishihara, K.; Kubota, M.; Yamamoto, H. Synlett 1996, 61, 265.
7. Iqbal, J.; Srivastava, R. R. J. Org. Chem. 1992, 57, 2001.
8. Kartha, K. P.; Field, R. A. Tetrahedron 1997, 53, 11753.
9. Samad, K.; Hasan, Z. Comb. Chem. and High Throughput Screening 2012, 15, 1875.
10. Ghosh, P.; Mandal, A. J. Ind. Chem. Soc. 2012, 89, 261.
11. Mokhtary, M.; Qandalee, M.; Najafizadeh, F. C. R. Chim. 2012, 15, 389.
12. Taylor, J. E.; Williams, J. M. J.; Bull, S. D. Tetrahedron Lett. 2012, 53, 4074.
13. Holla, E. W. Carbohydr. Chem. 1990, 9, 113.
14. (a) Mansilla, H.; Afonso, M. M. Synth. Commun. 2008, 38, 2607; (b) Spafford, M.
J.; Anderson, E. D.; Lacey, J. R.; Palma, A. C.; Mohan, R. S. Tetrahedron Lett. 2007,
48, 8665; (c) Bothwell, J. M.; Angeles, V. V.; Carolan, J. P.; Olson, M. E.; Mohan,
R. S. Tetrahedron Lett. 2010, 51, 1056; (d) Olson, M. E.; Carolan, J. P.; Chiodo, M.
V.; Lazzara, P. R.; Mohan, R. S. Tetrahedron Lett. 2010, 51, 3969; (e) Bockman, M.
R.; Angeles, V. V.; Martino, J. M.; Vagadia, P. P. Tetrahedron Lett. 2011, 52, 6939.
15. Hajipour, A. R.; Khazdooz, L.; Ruoho, A. E. J. Chin. Chem. Soc. 2009, 56, 398.
16. Magens, S.; Plietket, B. J. Org. Chem. 2010, 75, 3715.
17. Weng, S.-S.; Ke, C.-S.; Chen, F.-K.; Lyu, Y.-F.; Lin, G.-Y. Tetrahedron 2011, 67,
1640.
18. Mino, T.; Hasegawa, T.; Shirae, Y.; Sakamoto, M.; Fujita, T. J. Organomet. Chem.
2007, 692, 4389.
19. Maizuru, N.; Inami, T.; Kurahashi, T.; Matsubara, S. Org. Lett. 2011, 13, 1206.
Although this compound is known, its spectral data has not been previously
reported. Hence it is given here. 1H NMR (270 MHz, CDCl3) d 0.87 (t, 3 H, J =
7.2 Hz), 1.42 (m, 2 H), 2.00 (s, 3 H), 2.03 (m, 2 H), 2.41 (m, 2 H), 4.04 (t, 2 H, J =
6.9 Hz);13C NMR (67.5 MHz, CDCl3, 9 peaks): 13.2, 19.1, 20.5, 20.7, 22.1, 62.8,
75.5, 81.7, 170.7.
20. Sato, F. PCT Int. Appl, 1996, WO 9628250 A1 19960919. Although this
compound is known, its spectral data has not been previously reported. Hence
it is given here. 1H NMR (270 MHz, CDCl3) d 0.91 (t, 3 H, J = 7.2 Hz), 1.46 (m, 2
H), 2.08 (m, 2 H), 2.59 (m, 2 H), 4.38 (t, 2 H, J = 7.2 Hz), 7.3 – 8.0 (m, 5 H); 13C
NMR (67.5 MHz, CDCl3, 12 peaks)13.2, 19.2, 20.5, 22.1, 63.1, 75.5, 81.8, 128.1,
129.5, 130.0, 132.8, 166.1
21. Wang, D.-S.; Li, G.-Y.; Peng, Y.-Q. J. Chin. Chem. Soc. 2009, 56, 834.
22. Huffman, J. W.; Desai, R. C. Synth. Commun. 1983, 13, 553.
23. Riveiros, R.; Rodriguez, D.; Sestelo, J. P.; Sarandeses, L. A. Org. Lett. 2006, 8,
1403.
24. Xu, Z.-Y.; Xu, D.-Q.; Liu, B.-Y.; Luo, S.-P. Synth. Commun. 2003, 33, 4143.
25. Lemke, K.; Lemke, M.; Theil, F. J. Org. Chem. 1997, 62, 6268.
26. Zhong, W.; Liu, S.; Yang, J.; Meng, X.; Li, Z. Org. Lett. 2012, 14, 3336.
27. Malík, L.; Halmo, F.; Prónayová, N.; Liptaj, T. Petrochémia 1986, 26, 100.
28. (a) Trost, B. M.; Lee, C. B. J. Am. Chem. Soc. 2001, 123, 3687; (b) Anzalone, P. A.;
Baru, A. R.; Danielson, E. M.; Hayes, P. D.; Nguyen, M. P.; Panico, A. F.; Smith, R.
C.; Mohan, R. S. J. Org. Chem. 2005, 70, 2091.
Method D (synthesis of an acylal): A homogeneous mixture of
m-anisaldehyde (0.500 g, 3.67 mmol) and acetic anhydride
(0.75 g, 0.694 mL, 7.35 mmol, 2.0 equiv) was stirred at room tem-
perature as Fe(OTs)3ꢀ6H2O (0.0448 g, 0.0735 mmol, 2.0 mol %)
was added. (Caution: an exothermic reaction occurs and hence
due care must be exercised when scaling up this reaction). The
reaction progress was followed by 1H NMR spectroscopy. After
3 h 40 min, aqueous 10% NaHCO3 (10 mL) was added to the reac-
tion mixture and stirred for 10 min. The reaction mixture was ex-
tracted with EtOAc (2 ꢂ 20 mL) and the combined organic layers
were washed with saturated NaCl (15 mL), dried (Na2SO4) and con-
centrated on a rotary evaporator to yield 0.869 g of an orange li-
quid. The crude product was purified by flash chromatography
(5 g silica) using EtOAc/heptane (20/80) as the eluent to yield
0.801 g (92%) of the acylal as a colorless liquid that was determined
to be >98% pure by 1H and 13C NMR spectroscopy.
29. Boroujeni, K. P. Synth. Commun. 2011, 41, 277.
30. Datta, B.; Pasha, M. A. Synth. Commun. 2011, 41, 1160.
31. Khazaei, A.; Manesh, A. A.; Rostami, A.; Alavi-Nik, H. A.; Roosta, Z. T. Asian J.
Chem. 2011, 2, 614.
32. Khazaei, A.; Manesh, A.; Alavi-Nik, H. A.; Roosta, Z. T. Asian J. Chem. 2011, 23,
627.
33. Meshram, G. A.; Patil, V. D. Synth. Commun. 2010, 40, 442.
34. Shelke, K. F.; Kakade, G. K.; Shinde, P. V.; Shingate, B. B.; Shingare, M. S. Chin.
Chem. Lett. 2009, 1453.
35. Wang, M.; Tian, G.; Song, Z.; Jiang, H. Chin. Chem. Lett. 2009, 1034.
36. Dalpozzo, R.; De Nino, A.; Maiuolo, L.; Nardi, M.; Procopio, A.; Russo, B.;
Tagarelli, A. ARKIVOC 2006, 6, 181.
37. Aggen, D. H.; Arnold, J. N.; Hayes, P. D.; Smoter, N. J.; Mohan, R. S. Tetrahedron
2004, 3675.
38. Carrigan, M. D.; Eash, K. J.; Oswald, M. C.; Mohan, R. S. Tetrahedron 2001, 8133.
39. Zhang, F.; Liu, H.; Zhang, Q.-J.; Zhao, Y.-F.; Yang, F.-L. Synth. Commun. 2010, 40,
3240.
Acknowledgements
40. Kochhar, K. S.; Bal, B. S.; Deshpande, R. P.; Rajadhyaksha, S. N.; Pinnick, H. W. J.
Org. Chem. 1983, 48, 1765.
41. Lin, L.; Zhang, Z.-H.; Wang, Y.-M.; Pang, M.-L. Synlett 2004, 1727.
42. Brezinski, B.; Grech, E.; Malarski, Z.; Sobczyk, L. J. Chem. Soc., Perkin Trans. 2
1991, 2, 857.
We wish to acknowledge a grant from the American Chemical
Society-Petroleum Research Fund (ACS PRF 51036-UR1) awarded
to RM.
43. According to the MSDS sheets, iron(III) tosylate is safer to use than p-
toluenesulfonic acid. Iron(III) tosylate has
identification system) rating of 2 (moderate hazard) while p-toluenesulfonic
a HMIS (hazardous material
References and notes
acid has a HMIS rating of 3 (serious hazard).
1. (a) Greene, T. W.; Wots, P. G. M. Protective Groups in Organic Synthesis, 3rd ed.;
John Wiley and Sons, Inc.: New York, 1999; (b) Hanson, J. R. Protecting Groups in