DOI: 10.1039/C4RA15919E
RSC Advances
50 b University of Chinese Academy of Sciences, Beijing 100049, P. R. China.
† Electronic Supplementary Information (ESI) available: Experimental
details; additional table, scheme and figures; copies of NMR, GC and MS
spectra. See DOI: 10.1039/b000000x/
naphthalene as internal standard. All results were calculated
based on the initial amount of isosorbide. The conversion of
isosorbide and the yields of monoether (2-O and 5-O-
monomethyl isosorbide) and diether (dimethyl isosorbide)
products, expressed as mol%, were determined as below.
1
(a) R. J. van Putten, J. C. van der Waal, E. de Jong, C. B. Rasrendra,
H. J. Heeres and J. G. de Vries, Chem. Rev., 2013, 113, 1499; (b) Y.
L. Wang, W. P. Deng, B. J. Wang, Q. H. Zhang, X. Y. Wan, Z. C.
Tang, Y. Wang, C. Zhu, Z. X. Cao, G. C. Wang and H. L. Wan, Nat.
Commun., 2013, 4.
5
55
60
65
moles of unreacted isosorbide
moles of initial isosorbide
Conversion 1
100%
100%
2
(a) P. Che, F. Lu, J. Zhang, Y. Huang, X. Nie, J. Gao and J. Xu,
Bioresour. Technol., 2012, 119, 433; (b) I. Sádaba, Y. Y. Gorbanev,
S. Kegnæs, S. S. R. Putluru, R. W. Berg and A. Riisager,
ChemCatChem, 2013, 5, 284; (c) J. Y. Cai, H. Ma, J. J. Zhang, Q.
Song, Z. T. Du, Y. Z. Huang and J. Xu, Chem. - Eur. J., 2013, 19,
14215; (d) M. Rose, K. Thenert, R. Pfutzenreuter and R. Palkovits,
Catal. Sci. Technol., 2013, 3, 938; (e) J. Li, L. Liu, Y. Liu, M. Li, Y.
Zhu, H. Liu, Y. Kou, J. Zhang, Y. Han and D. Ma, Energy Environ.
Sci., 2014, 7, 393.
moles of formed monoether
moles of initial isosorbide
Monoether yield
moles of formed diether
moles of initial isosorbide
Diether yield
100%
3
W. P. Deng, M. Liu, Q. H. Zhang, X. S. Tan and Y. Wang, Chem.
Commun., 2010, 46, 2668.
Separation of the isosorbide methyl ethers: At the end of the
10 reaction, with the addition of hexane, the reaction mixtures were
separated into two layers after centrifugation. The transparent
organic layer was collected, concentrated with a rotary evaporator,
and distilled under vacuum. Then, the enriched distillation
fractions were subjected to silica-gel column chromatography
15 eluted with a gradient mixture of petroleum ether/acetone (15/1 to
5/1, v/v). Thus, isosorbide methyl ethers were isolated as pure
compounds.
70 4 M. Sutter, W. Dayoub, E. Métay, Y. Raoul and M. Lemaire,
ChemCatChem, 2013, 5, 2893.
5
P. Tundo, F. Aricò, G. Gauthier, L. Rossi, A. E. Rosamilia, H. S.
Bevinakatti, R. L. Sievert and C. P. Newman, ChemSusChem, 2010,
3, 566.
75 6 H. Zhu, Q. Cao, C. H. Li and X. D. Mu, Carbohydr. Res., 2011, 346,
2016.
7
(a) M. Rose and R. Palkovits, ChemSusChem, 2012, 5, 167; (b) J. I.
Garcia, H. Garcia-Marin and E. Pires, Green Chem., 2014, 16, 1007;
(c) M. J. Climent, A. Corma and S. Iborra, Green Chem., 2014, 16,
516.
1
2-O-Monomethyl isosorbide: H NMR (400 MHz, CDCl3):
80
4.60 (t, J = 5.0 Hz, 1H), 4.47 (d, J = 4.5 Hz, 1H), 4.33–4.24 (m,
20 1H), 4.05 (d, J =9.9 Hz, 1H), 3.92 (d, J =3.8 Hz, 1H), 3.90–3.81
(m, 2H), 3.58 (dd, J = 9.5 Hz, J = 5.6 Hz, 1H), 3.39 (s, 3H), 2.68
(d, J =6.7 Hz, 1H) ppm. 13C NMR (101 MHz, CDCl3): 85.94,
85.77, 82.04, 73.95, 73.32, 72.54, 57.53 ppm. ESI-MS (m/z): 160
8
9
M. Selva and A. Perosa, Green Chem., 2008, 10, 457.
P. Tundo, S. Memoli, D. Herault and K. Hill, Green Chem., 2004, 6,
609.
10 G. A. Kraus and T. Guney, Green Chem., 2012, 14, 1593.
85 11 J. A. Melero, G. Vicente, M. Paniagua, G. Morales and P. Muñoz,
Bioresour. Technol., 2012, 103, 142.
12 (a) M. Adinolfi, A. Iadonisi, A. Ravidà and M. Schiattarella,
Tetrahedron Lett., 2004, 45, 4485; (b) Y.-C. Lu, D. G. Kwabi, K. P.
C. Yao, J. R. Harding, J. Zhou, L. Zuin and Y. Shao-Horn, Energy
(M+).
1
25
5-O-Monomethyl isosorbide: H NMR (400 MHz, CDCl3):
4.73 (t, J = 4.1 Hz, 1H), 4.46 (d, J = 4.2 Hz, 1H), 4.32 (d, J = 2.8
Hz, 1H), 4.03–3.90 (m, 4H), 3.58 (t, J = 10.8 Hz, 1H), 3.48 (s,
3H), 2.18 (s, 1H) ppm. 13C NMR (101 MHz, CDCl3): 88.69,
82.11, 80.09, 77.07, 76.22, 70.26, 58.60 ppm. ESI-MS (m/z): 160
90
95
Environ. Sci., 2011, 4, 2999.
13 G. D. Yadav and J. J. Nair, Microporous Mesoporous Mater., 1999,
33, 1.
14 (a) G. Liu, Q. Zhang, Y. Han, N. Tsubaki and Y. Tan, Green Chem.,
2013, 15, 1501; (b) Y. Lv, T. Wang, C. Wu, L. Ma and Y. Zhou,
Biotechnol. Adv., 2009, 27, 551.
30 (M+).
1
Dimethyl isosorbide: H NMR (400 MHz, CDCl3): 4.66 (t, J
= 4.3 Hz, 1H), 4.52 (d, J = 4.3 Hz, 1H), 4.043.90 (m, 4H),
3.893.85 (m, 1H), 3.653.54 (m, 1H), 3.47 (s, 3H), 3.38 (s, 3H)
ppm. 13C NMR (101 MHz, CDCl3): 86.23, 86.21, 82.11, 80.22,
35 73.35, 70.07, 58.56, 57.50 ppm. ESI-MS (m/z): 174 (M+). All
spectral features of isosorbide methyl ethers correspond to those
reported in the literature.5 See ESI† for more experimental details.
Acknowledgements
We acknowledge the National Natural Science Foundation of
40 China (Grant No. 21473188, 21233008) and the "Strategic
Priority Research ProgramClimate Change: Carbon Budget and
Related Issues" of the Chinese Academy of Sciences
(XDA05010203) for the financial support. We thank Dr. Y. Z.
Huang, G. S. Feng and S. Chen for their kind help.
45 Notes and references
a State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics,
Chinese Academy of Sciences, Dalian National Laboratory for Clean
Energy, Dalian 116023, P. R. China. Fax: +86-411-8437-9245; Tel:
+86-411-8437-9245; E-mail: xujie@dicp.ac.cn; lufang@dicp.ac.cn.
4
| Journal Name, [year], [vol], 00–00
This journal is © The Royal Society of Chemistry [year]