D
S. Wübbolt, M. Oestreich
Cluster
Synlett
(6) (a) Arrowsmith, M.; Hill, M. S.; Hadlington, T.; Kociok-Köhn, G.;
Weetman, C. Organometallics 2011, 30, 5556. (b) Khalimon, A.
Y.; Farha, P.; Kuzmina, L. G.; Nikonov, G. I. Chem. Commun. 2012,
48, 455. (c) Khalimon, A. Y.; Farha, P. M.; Nikonov, G. I. Dalton
Trans. 2015, 44, 18945. (d) Weetman, C.; Anker, M. D.;
Arrowsmith, M.; Hill, M. S.; Kociok-Köhn, G.; Liptrot, D. J.;
Mahon, M. F. Chem. Sci. 2016, 7, 628. (e) Schnitzler, S.; Spaniol,
T. P.; Okuda, J. Inorg. Chem. 2016, 55, 12997. (f) Mukherjee, D.;
Shirase, S.; Spaniol, T. P.; Mashima, K.; Okuda, J. Chem. Commun.
2016, 52, 13155. (g) Kaithal, A.; Chatterjee, B.; Gunanathan, C.
J. Org. Chem. 2016, 81, 11153. (h) Espinal-Viguri, M.; Woof, C. R.;
Webster, R. L. Chem. Eur. J. 2016, 22, 11605.
(16) (a) Klare, H. F. T.; Oestreich, M.; Ito, J.-I.; Nishiyama, H.; Ohki, Y.;
Tatsumi, K. J. Am. Chem. Soc. 2011, 133, 3312. (b) Königs, C. D. F.;
Klare, H. F. T.; Ohki, Y.; Tatsumi, K.; Oestreich, M. Org. Lett. 2012,
14, 2842. (c) Königs, C. D. F.; Müller, M. F.; Aiguabella, N.; Klare,
H. F. T.; Oestreich, M. Chem. Commun. 2013, 49, 1506.
(d) Hermeke, J.; Klare, H. F. T.; Oestreich, M. Chem. Eur. J. 2014,
20, 9250. (e) Wübbolt, S.; Oestreich, M. Angew. Chem. Int. Ed.
2015, 54, 15876.
(17) (a) Königs, C. D. F.; Klare, H. F. T.; Oestreich, M. Angew. Chem. Int.
Ed. 2013, 52, 10076. (b) Metsänen, T. T.; Oestreich, M. Organo-
metallics 2015, 34, 543. (c) Bähr, S.; Oestreich, M. Organometal-
lics 2017, 36, 935. (d) Wübbolt, S.; Maji, M. S.; Irran, E.;
Oestreich, M. Chem. Eur. J. 2017, 23, 6213.
(7) Gutsulyak, D. V.; Nikonov, G. I. Angew. Chem. Int. Ed. 2010, 49,
7553.
(18) Enolizable ketones16b and imines16d are initially converted into
silyl enol ethers and N-silyl enamines, respectively, but undergo
at prolonged reaction times subsequent hydrogenation with the
dihydrogen released in the preceding dehydrogenative coupling
step.17c,d
(19) For a synthetic and mechanistic study of hydrogenation cata-
lyzed by [3a]+[BArF4]–, see: Lefranc, A.; Qu, Z.-W.; Grimme, S.;
Oestreich, M. Chem. Eur. J. 2016, 22, 10009.
(8) For examples of monohydrosilylation of nitriles, see: (a) Kim, J.;
Kang, Y.; Lee, J.; Kong, Y. K.; Gong, M. S.; Kang, S. O.; Ko, J.
Organometallics 2001, 20, 937. (b) Hashimoto, H.; Aratani, I.;
Kabuto, C.; Kira, M. Organometallics 2003, 22, 2199.
(c) Watanabe, T.; Hashimoto, H.; Tobita, H. J. Am. Chem. Soc.
2006, 128, 2176. (d) Ochiai, M.; Hashimoto, H.; Tobita, H. Angew.
Chem. Int. Ed. 2007, 46, 8192. (e) Khalimon, A. Y.; Simionescu,
R.; Kuzmina, L. G.; Howard, J. A. K.; Nikonov, G. I. Angew. Chem.
Int. Ed. 2008, 47, 7701. (f) Peterson, E.; Khalimon, A. Y.;
Simionescu, R.; Kuzmina, L. G.; Howard, J. A. K.; Nikonov, G. I.
J. Am. Chem. Soc. 2009, 131, 908. (g) Peng, H.; Yu, J.-T.; Bao, W.;
Xu, J.; Cheng, J. Org. Biomol. Chem. 2015, 13, 10600.
(9) Gandhamsetty, N.; Jeong, J.; Park, J.; Park, S.; Chang, S. J. Org.
Chem. 2015, 80, 7281.
(10) α,β-Unsaturated nitriles yield β-silyl amines: Gandhamsetty, N.;
Park, J.; Jeong, J.; Park, S.-W.; Park, S.; Chang, S. Angew. Chem.
Int. Ed. 2015, 54, 6832.
(11) A similar observation where the chemoselectivity is controlled
by the reaction temperature (25 °C vs. 100 °C) was made by
Stephan and co-workers before: Perez, M.; Qu, Z.-W.; Caputo, C.
B.; Podgorny, V.; Hounjet, L. J.; Hansen, A.; Dobrovetsky, R.;
Grimme, S.; Stephan, D. W. Chem. Eur. J. 2015, 21, 6491.
(12) Bornschein, C.; Werkmeister, S.; Junge, K.; Beller, M. New J.
Chem. 2013, 37, 2061.
(20) General Procedure for Nitrile-to-Amine Reduction
In a glove box, a flame-dried GLC vial equipped with a magnetic
–
stir bar is charged with [3a]+[BArF
]
(1.0 mol%) and Me2PhSiH
4
(2a, 2.1 or 5.0 equiv). The indicated nitrile is added either in the
glove box (for solid starting materials) or by microsyringe
outside the glove box, and the resulting reaction mixture is
maintained at r.t. for the indicated time. The reaction is
quenched by the addition of a mixture of cyclohexane and tert-
butyl methyl ether (90:10) containing 4% Et3N (0.5 mL), and the
resulting solution is filtered through a pad of Celite® coated by a
small layer of silica gel with a solution of cyclohexane and tert-
butyl methyl ether (90:10) containing 4% Et3N (3–4 mL) as
eluent. Solvents are removed under reduced pressure, and the
residue is dissolved in Et2O (1 mL) followed by addition of HCl (2
M in Et2O, 1.0 mL, 2.0 mmol, 10 equiv). The resulting suspen-
sion is stirred for 1 h and filtered, affording the amines as
hydrochloride salts as white to yellow solids.
(13) Ohki, Y.; Takikawa, Y.; Sadohara, H.; Kesenheimer, C.;
Engendahl, B.; Kapatina, E.; Tatsumi, K. Chem. Asian J. 2008, 3,
1625.
(14) For a recent summary, see: Omann, L.; Königs, C. D. F.; Klare, H.
F. T.; Oestreich, M. Acc. Chem. Res. 2017, 50, 1258.
(15) Stahl, T.; Hrobárik, P.; Königs, C. D. F.; Ohki, Y.; Tatsumi, K.;
Kemper, S.; Kaupp, M.; Klare, H. F. T.; Oestreich, M. Chem. Sci.
2015, 6, 4324.
(21) General Procedure for Nitrile-to-Imine Reduction
In a glove box, a flame-dried GLC vial equipped with a magnetic
stir bar is charged with [3a]+[BArF4]– (1.0 mol%), Et3SiH (2b, 2.0
equiv), and mesitylene (10 μL, 8.7 mg, 0.20 mmol, internal stan-
dard). The indicated nitrile is added either in the glove box (for
solid starting materials) or by microsyringe outside the glove
box, and the resulting reaction mixture is maintained at r.t. for
18 h. The mixture is then dissolved in CD2Cl2 (0.6 mL) and trans-
1
ferred into a NMR tube. H NMR spectroscopy is used to deter-
mine the yield with reference to mesitylene.
© Georg Thieme Verlag Stuttgart · New York — Synlett 2017, 28, A–D