J. Am. Chem. Soc. 1996, 118, 13097-13098
13097
Galactose Oxidase Model Complexes: Catalytic
Reactivities
Yadong Wang and T. D. P. Stack*
Department of Chemistry, Stanford UniVersity
Stanford, California 94305
ReceiVed June 24, 1996
Protein-based radicals in enzymatic reactions are no longer
considered suspect, since numerous enzymes are now known
to function through organic side chain radicals.1,2 Such is the
case of galactose oxidase (GOase),3 a mononuclear copper
enzyme which uses a modified tyrosyl radical to facilitate the
two-electron oxidation of primary alcohols to aldehydes with
subsequent reduction of dioxygen to peroxide.1 This modified
tyrosine residue contains a covalent cross-link between an
aromatic carbon atom and a cysteine thiolate (Figure 1).4 The
hydroxyl group of the tyrosyl radical is ligated directly to the
copper center as revealed by spectroscopic5,6 and crystal-
lographic studies.4 In its fully oxidized form, the copper center
is EPR-silent, consistent with strong antiferromagnetic coupling
between a ligand-based radical and a d9 Cu(II) center. Mecha-
nistic proposals6,7 suggest that the square pyramidal coordination
of the copper in GOase serves to position the methylene
hydrogen of the substrate alcohol in close proximity to the
oxygen atom of the tyrosyl radical (Figure 1).
Figure 1. Proposed catalytic cycle of galactose oxidase.6
Our aim is to elucidate the structural features essential for
GOase reactivity through functional model chemistry. Many
structural and spectroscopic model complexes of GOase have
recently been reported;8,9 however, reactivity studies are pre-
cluded in many cases because the complexes exist as unreactive
phenolate-bridged dimers.9 One study has reported a nonsquare
planar copper complex that exhibits catalytic oxidase reactivity
under extremely basic conditions.10 Presented here are GOase
model complexes that reproduce many of the unique properties
of GOase, including stabilization of EPR-silent species obtained
by one-electron oxidation of Cu(II) complexes, and catalytic
conversion of an alcohol to an aldehyde in the presence of a
suitable oxidant. A correlation is found between Cu(II)
complexes that exhibit a moderately stable EPR-silent state and
those that exhibit oxidase reactivity.
Figure 2.15 Ligand synthesis. The key step is the ortho-lithiation of a
1,3-dimethylimidazolidine-protected salicylaldehyde14 followed by elec-
trophilic attack of a suitable disulfide. (Ligands H23, H25, and H26 do
not require steps i-iv.) Condensation of the aldehyde with diamine
followed by metal incorporation gives the complexes. Reagents: i.
dimethylethylenediamine, EtOH, 25 °C; ii. 2 equiv of n-BuLi, TMEDA,
Et2O, 25 °C; iii. R3-R3; iv. HCl (2 M), H2O; v. H2N-Rb-NH2, EtOH,
reflux; vi. Cu(OAc)2, MeOH, reflux.
(1) Whittaker, M. M.; DeVito, V. L.; Asher, S. A.; Whittaker, J. W. J.
Biol. Chem. 1989, 264, 7104-7106.
The ligands in Figure 2 provide a single metal ion with an
N2O2 coordination environment with various degrees of distor-
tion from a square planar geometry depending on the backbone
diamine. Two-carbon-bridged diimines generate nearly planar
Cu(II) complexes,11 while three-10 and four-carbon-bridged
diimines12 induce significant distortions toward a tetrahedral
coordination. Such tetrahedral distortions should enhance not
only the affinity of the metal center for a fifth ligand (potential
substrate molecule)13 but also the stability of the Cu(I) form. A
succinct, yet versatile synthesis of the appropriately substituted
salicylaldehydes is outlined in Figure 2. The modular nature
of this synthesis allows a systematic variation of the ligands to
(2) (a) Frey, P. A. Chem. ReV. 1990, 90, 1343-1357. (b) Harkins, T.
T.; Grissom, C. B. Science 1994, 958-960. (c) Picot, D.; Loll, P. J.;
Garavito, R. M. Nature 1994, 367, 243-249.
(3) Avigad, G.; Amaral, D.; Asensio, C.; Horecker, B. L. J. Biol. Chem.
1962, 237, 2736-2743.
(4) (a) Ito, N.; Phillips, S. E. V.; Stevens, C.; Ogel, Z. B.; McPherson,
M. J.; Keen, J. N.; Yadav, K. D. S.; Knowles, P. F. Nature 1991, 350,
87-90. (b) Ito, N.; Phillips, S.; Yadav, K.; Knowles, P. F. J. Mol. Biol.
1994, 238, 794-814.
(5) (a) Whittaker, M. M.; Whittaker, J. W. J. Biol. Chem. 1990, 265,
9610-9613. (b) Babcock, G. T.; Eldeeb, M. K.; Sandusky, P. O.; Whittaker,
M. M.; Whittaker, J. W. J. Am. Chem. Soc. 1992, 114, 3727-3734. (c)
Whittaker, M. M.; Chuang, Y. Y.; Whittaker, J. W. J. Am. Chem. Soc.
1993, 115, 10029-10035. (d) Clark, K.; Pennerhahn, J. E.; Whittaker, M.;
Whittaker, J. W. Biochemistry 1994, 33, 12553-12557. (e) Knowles, P.
F.; Brown, R. D.; Koenig, S. H.; Wang, S.; Scott, R. A.; McGuirl, M. A.;
Brown, D. E.; Dooley, D. M. Inorg. Chem. 1995, 34, 3895-3902.
(6) Whittaker, M. M.; Whittaker, J. W. Biophys. J. 1993, 64, 762-772.
(7) (a) Wachter, R. M.; Branchaud, B. P. J. Am. Chem. Soc. 1996, 118,
2782-2789. (b) Branchaud, B. P.; Montague-Smith, M. P.; Kosman, D. J.;
McLaren, F. R. J. Am. Chem. Soc. 1993, 115, 798-800.
(8) (a) Adams, H.; Bailey, N. A.; Campbell, I. K.; Fenton, D. E.; He, Q.
Y. J. Chem. Soc., Dalton Trans. 1996, 2233-2237. (b) Halfen, J. A.; Young,
V. G.; Tolman, W. B. Angew. Chem., Int. Ed. Engl. 1996, 35, 1687-1690.
(9) (a) Whittaker, M. M.; Duncan, W. R.; Whittaker, J. W. Inorg. Chem.
1996, 35, 382-386. (b) Adams, H.; Bailey, N. A.; Fenton, D. E.; He, Q.
Y.; Ohba, M.; Okawa, H. Inorg. Chim. Acta 1994, 215, 1-3.
(10) Kitajima, N.; Whang, K.; Moro-oka, Y.; Uchida, A.; Sasada, Y. J.
Chem. Soc., Chem. Commun. 1986, 1504-1505.
(11) The dihedral angle between the two O-Cu-N planes of the
cyclohexyldiamine Shiff-base complex is 15°. Bernardo, K.; Leppard, S.;
Robert, A.; Commenges, G.; Dahan, F.; Meunier, B. Inorg. Chem. 1996,
35, 387-396.
(12) O’Connor, M. J.; Ernst, R. E.; Holm, R. H. J. Am. Chem. Soc. 1968,
90, 4561-4568.
(13) Ligand exchange in four-coordinate complexes generally proceeds
through an associative mechanism. The idealized geometry of a five-
coordinate intermediate is trigonal bipyramidal. A 45° distortion from a
square planar array is necessary to achieve this geometry, a distortion similar
to that observed in the crystal structures reported.
(14) (a) Gray, M.; Parsons, P. J. Synlett 1991, 729-730. (b) Tamura,
E.; Kawasaki, K.; Mikame, D.; Katsuki, T. Synlett 1994, 609-610.
S0002-7863(96)02135-X CCC: $12.00 © 1996 American Chemical Society