ChemComm
Communication
oxygen atoms (OW) of two [g-H2SiW10O36]6ꢁ subunits with an
average Ag–OW distance of 2.28 Å. The Ag1–Ag2, Ag1–Ag3,
Ag2–Ag3, and Ag3–Ag2* distances were 2.75 Å, 2.71 Å, 2.76 Å,
and 2.86 Å, respectively. The Ag3–Ag2* distance was slightly
longer than the Ag2–Ag3 distance because of the rectangle
geometry of oxygen donors of [g-H2SiW10O36]6ꢁ subunits
(3.18 Å and 5.21 Å for O1ꢀ ꢀ ꢀO2 and O1ꢀ ꢀ ꢀO3 separations,
respectively). These Ag–Ag distances were shorter than those
of metallic silver (2.88 Å) and the sum of the van der Waals radii
of silver atoms (3.44 Å), suggesting the existence of closed-shell
interactions. It is well known that d10 metals (herein AgI
species) tend to show closed-shell interactions.13 In com-
parison with multimetallic complexes composed of only AgI
species, the hexasilver cluster in Ag6 was subvalent, and the
additional two electrons occupied the bonding molecular
orbital,12 resulting in stronger argentophilic interactions.13
Indeed, the Ag–Ag distances in Ag6 (2.71–2.86 Å) were signifi-
cantly shorter than those of previously reported organometallic
complexes with [Ag6]6+ clusters (2.81–3.28 Å, Table S3, ESI†)14
and Ag4 (2.96–3.07 Å, Fig. S1, ESI†),9 and comparable to those
of previously reported compounds with subvalent [Ag6]4+ units
(2.70–2.86 Å, Table S4, ESI†).12
(c) S. S. Y. Chui, M. F. Y. Ng and C.-M. Che, Chem.–Eur. J., 2005,
11, 1739; (d) Y. Zhou and W. Chen, Organometallics, 2007, 26, 2742;
(e) R. J. T. Houk, B. W. Jacobs, F. E. Gabaly, N. N. Chang, A. A. Talin,
D. D. Graham, S. D. House, I. M. Robertson and M. D. Allendorf, Nano
¨
Lett., 2009, 9, 3413; ( f ) S. Hermes, M.-K. Schroter, R. Schmid,
L. Khodeir, M. Muhler, A. Tissler, R. W. Fischer and R. A. Fischer,
Angew. Chem., Int. Ed., 2005, 44, 6237; (g) K. Takao, K. Suzuki, T. Ichijo,
S. Sato, H. Asakura, K. Teramura, K. Kato, T. Ohba, T. Morita and
M. Fujita, Angew. Chem., Int. Ed., 2012, 51, 5893.
4 (a) C. L. Hill and C. M. Prosser-McCartha, Coord. Chem. Rev., 1995,
143, 407; (b) T. Okuhara, N. Mizuno and M. Misono, Adv. Catal.,
1996, 41, 113; (c) R. Neumann, Prog. Inorg. Chem., 1998, 47, 317;
(d) I. V. Kozhevnikov, Catalysis by Polyoxometalates, John Wiley &
Sons, Ltd., Chichester, 2002; (e) N. V. Izarova, M. T. Pope and
U. Kortz, Angew. Chem., Int. Ed., 2012, 51, 9492.
5 (a) Y. Nakagawa, K. Kamata, M. Kotani, K. Yamaguchi and
N. Mizuno, Angew. Chem., Int. Ed., 2005, 44, 5136; (b) K. Kamata,
S. Yamaguchi, M. Kotani, K. Yamaguchi and N. Mizuno, Angew.
Chem., Int. Ed., 2008, 47, 2407; (c) Y. Kikukawa, S. Yamaguchi,
Y. Nakagawa, K. Uehara, S. Uchida, K. Yamaguchi and N. Mizuno,
J. Am. Chem. Soc., 2008, 130, 15872.
6 (a) Y. Kikukawa, K. Yamaguchi and N. Mizuno, Angew. Chem., Int.
Ed., 2010, 49, 6096; (b) Q. Yin, J. M. Tan, C. Besson, Y. V. Geletii,
D. G. Musaev, A. E. Kuznetsov, Z. Luo, K. I. Hardcastle and C. L. Hill,
´
Science, 2010, 328, 342; (c) A. Sartorel, P. Miro, E. Salvadori,
S. Romain, M. Carraro, G. Scorrano, M. Di Valentin, A. Llobet,
C. Bo and M. Bonchio, J. Am. Chem. Soc., 2009, 131, 16051;
¨
(d) Y. V. Geletii, B. Botar, P. Kogerler, D. A. Hillesheim,
D. G. Musaev and C. L. Hill, Angew. Chem., Int. Ed., 2008,
47, 3896; (e) Y. Kikukawa, S. Yamaguchi, K. Tsuchida,
Y. Nakagawa, K. Uehara, K. Yamaguchi and N. Mizuno, J. Am. Chem.
Soc., 2008, 130, 5472.
In summary, we reported herein for the first time the
synthesis and structural characterization of a unique POM
7 (a) R. Villanneau, A. Proust, F. Robert and P. Gouzerh, Chem.
Commun., 1998, 1491; (b) H. An, Y. Li, E. Wang, D. Xiao, C. Sun
and L. Xu, Inorg. Chem., 2005, 44, 6062; (c) E. F. Wilson, H. Abbas,
B. J. Duncombe, C. Streb, D.-L. Long and L. Cronin, J. Am. Chem.
Soc., 2008, 130, 13876; (d) H. Abbas, C. Streb, A. L. Pickering,
A. R. Neil, D.-L. Long and L. Cronin, Cryst. Growth Des., 2008,
8, 635; (e) F. Gruber and M. Jansen, Z. Anorg. Allg. Chem., 2011,
637, 1676; ( f ) F. Gruber and M. Jansen, Inorg. Chim. Acta, 2010,
363, 4282; (g) F. Gruber and M. Jansen, Angew. Chem., Int. Ed., 2010,
49, 4924; (h) L. Dai, W. You, E. Wang, S. Wu, Z. Su, Q. Du, Y. Zhao
and Y. Fang, Cryst. Growth Des., 2009, 9, 2110; (i) J. Qiao, K. Shi and
Q.-M. Wang, Angew. Chem., Int. Ed., 2010, 49, 1765; ( j) G.-G. Gao,
P.-S. Cheng and T. C. W. Mak, J. Am. Chem. Soc., 2009, 131, 18257.
8 (a) X. Wei, R. E. Bachman and M. T. Pope, J. Am. Chem. Soc., 1998,
120, 10248; (b) N. N. Sveshnikov, M. H. Dickman and M. T. Pope,
containing
a hexasilver cluster. The detailed formation
mechanism and its catalytic applications8 are now under
investigation.
We thank M. Shinoe and T. Tsukahara (The University of
Tokyo) for their help with preliminary experiments. This work
was supported in part by the Japan Society for the Promotion
of Science (JSPS) and Grants-in-Aid for Scientific Research
from the Ministry of Education, Culture, Sports, Science and
Technology.
Notes and references
´
Inorg. Chim. Acta, 2006, 359, 2721; (c) E. Cadot, V. Bereau, B. Marg,
‡ When the reaction was carried out without TBA4H4[g-SiW10O36],
a mixture of metallic silver and AgOAc (starting material) was obtained.
§ The corresponding disiloxane was also detected possibly formed from
1 and/or the silylacetate in the presence of water.
´
S. Halut and F. Secheresse, Inorg. Chem., 1996, 35, 3099.
9 Y. Kikukawa, Y. Kuroda, K. Yamaguchi and N. Mizuno, Angew.
Chem., Int. Ed., 2012, 51, 2434.
10 (a) K. Kamata, K. Yonehara, Y. Sumida, K. Yamaguchi, S. Hikichi
and N. Mizuno, Science, 2003, 300, 964; (b) K. Kamata, M. Kotani,
K. Yamaguchi, S. Hikichi and N. Mizuno, Chem.–Eur. J., 2007,
13, 639.
¶ In our previously reported Ag4, the Ag1 atom was also coordinated to
two oxygen atoms of the central {SiO4} tetrahedron with an average
Ag–OSi distance of 2.46 Å (Fig. S1, ESI†).9
8 Compound Ag6 could act as an efficient (pre)catalyst for the hydro-
lytic oxidation of silanes. Various kinds of structurally diverse silanes
including aromatic, double bond-containing, and aliphatic ones could
be converted into the corresponding silanols in excellent yields
(Table S5, ESI†).
11 G. A. Bain and J. F. Berry, J. Chem. Educ., 2008, 85, 532.
¨
12 (a) H. G. Schnering and K.-G. Hausler, Rev. Chim. Miner., 1976,
13, 71; (b) W. Beesk, P. G. Jone, H. Rumpel, E. Schwarzmann and
G. M. Sheldrick, J. Chem. Soc., Chem. Commun., 1981, 664; (c) C. Link
and M. Jansen, Inorg. Chem., 1994, 33, 2614; (d) M. Jansen and
C. Linke, Angew. Chem., Int. Ed. Engl., 1992, 31, 653.
1 (a) G. Schmid, Chem. Rev., 1992, 92, 1709; (b) W. A. de Heer, Rev.
¨
Mod. Phys., 1993, 65, 611; (c) A. Kulkarni, R. L. Lapidus, J. Rodrigo 13 (a) P. Pyykko, Chem. Rev., 1997, 97, 597; (b) M. Jansen, Angew. Chem.,
and B. C. Gates, Chem. Commun., 2010, 46, 5997; (d) A. Laguna, Int. Ed. Engl., 1987, 26, 1098.
T. Lasanta, J. M. Lopez-de-Luzuriaga, M. Monge, P. Naumov and 14 (a) H. Dietrich, W. Storck and G. Manecke, J. Chem. Soc., Chem.
´
M. E. Olmos, J. Am. Chem. Soc., 2010, 132, 456; (e) A. Dass, J. Am.
Chem. Soc., 2012, 133, 19259; ( f ) P. Maity, S. Xie, M. Yamauchi and
T. Tsukuda, Nanoscale, 2012, 4, 4027.
2 (a) J. P. Wikoxon and B. L. Abrams, Chem. Soc. Rev., 2006, 35, 1162;
(b) J. T. Petty, J. Zheng, N. V. Hud and R. M. Dickson, J. Am. Chem.
Soc., 2004, 126, 5207; (c) M. A. Watzky and R. G. Finke, J. Am. Chem.
Soc., 1997, 119, 10382; (d) M. Zhao, L. Sun and R. M. Crooks, J. Am.
Chem. Soc., 1998, 120, 4877.
Commun., 1982, 1036; (b) R. Hesse and L. Nilson, Acta Chem. Scand.,
1969, 23, 825; (c) M. Shi, J.-K. Jiang and G.-L. Zhao, Eur. J. Inorg.
Chem., 2002, 3264; (d) Q.-H. Wei, L.-Y. Zhang, L.-X. Shi and
Z.-N. Chen, Inorg. Chem. Commun., 2004, 7, 286; (e) M. I. Bruce,
P. J. Low, B. K. Nicholson, B. W. Skelton, N. N. Zaitseva and
X.-I. Zhao, J. Organomet. Chem., 2010, 695, 1569; ( f ) V. W.-W.
Yam, W.-Y. Lo and N. Zhu, Chem. Commun., 2003, 2446;
(g) P. T. Wood, W. T. Pennington and J. W. Koils, J. Chem. Soc.,
Chem. Commun., 1993, 235; (h) L. Han, Z. Chen, J. Luo, M. Hong and
R. Cao, Acta Crystallogr., 2002, E58, m383.
3 (a) J. E. Martin, J. P. Wilcoxon, J. Odinek and P. Provencio,
J. Phys. Chem. B, 2000, 104, 9475; (b) R. Jin, Nanocluster, 2010, 2, 343;
c
378 Chem. Commun., 2013, 49, 376--378
This journal is The Royal Society of Chemistry 2013