characteristic of the smectic A ? smectic C transition.13 This
second fluid mesophase is monotropic, it may be observed for a
few minutes in the 135–110°C range, whereupon crystallization
rapidly occurs.
The DSC trace shows, on heating, two endotherms at 135 and
190 °C with enthalpies of 8.9 and 4.3 kJ mol21 respectively,
corresponding to the K ? SA and SA ? I transitions. On
cooling the reverse transitions take place at 186 and 123 °C.
Thus, whilst 7 is isotropic in the 135–190 °C range,
the appearance of lamellar order in 8 may be related to the
segregation of the ionic head from all other hydrophobic
moieities.
X-Ray diffraction experiments were carried out on unorien-
ted samples using Cu-Ka radiation. Attempts to investigate 8 in
the smectic C phase failed due to its metastable character. The
X-ray diffraction pattern recorded at 150 °C in the smectic A
phase of 8 is presented in Fig. 1.
At large angles, a broad diffuse ring with a maximum at 2p/q
= 4.9 Å (q = 4p sinq/l) confirms the identification as smectic
A and gives an estimate of the average intermolecular distance
(ca. 5.7 Å). At narrow angles, the diagram shows three 00l
reflections corresponding to an interlayer distance of 42.2 Å.
The distance is intermediate between once and twice the
molecular length (32 Å); a partially bilayered packing of the
smectic Ad type14 may therefore be proposed. A similar
observation was reported for other rodlike mesogens with ionic
head-groups.15 In Na+ and K+ long-chain carboxylates, a lipidic
sublayer thickness 1.3 times greater than the alkyl chain length
was interpreted by the formation of a double layer with strongly
disordered alkyl chains.16 In our case, the rigid cyanobiphenyl
cores cannot be accommodated in any conformation, however,
these fragments usually tend to optimize their packing by partial
interdigitation. As already mentioned for polyphilic mesogens
with cyanobiphenyl cores, the appearance of the smectic Ad and
C phases can be related to the close packing of lengthwise
dimers associated through the cyano groups.9
The potentialities of hydrogen-bond associated systems in the
design of new mesomorphic architectures have been evidenced
by several authors.17 The synthetic scheme described in this
paper permits the grafting of hydrogen-bond donor and acceptor
groups at each molecular end of a polyphilic compound. It is
noteworthy that polar rows of molecules may be formed in the
liquid phases of such materials (Fig. 2).
J. Simon is thanked for helpful and stimulating discussions,
D. Lelie`vre for her help in X-ray measurements.
Footnotes
† E-mail: fgt@cis.espci.fr
‡ Selected analytical data: 4: MS (EI, m/z): 412 [M]+, 277 [M 2
CO2CH2C6H5]+, 227 [M
2
CF2CO2CH2C6H5]+, 177 [M
2
(CF2)2CO2CH2C6H5]+, 127 [M 2 (CF2)3CO2CH2C6H5]+, 91 [M 2
I(CF2)3CO2]+. IR (KBr, cm21) 1778.9 (CNO), 1190.1, 1145.0 (C–F), 770
(C–H arom., out of plane). 1H NMR (CDCl3, Me4Si, 300 MHz, d) 7.43 (s,
5 H, C6H5), 5.4 (s, 2 H, CH2). 13C NMR (CDCl3, 75 MHz, d) 158.45 (t, J
29.9 Hz, CF2COOR), 133.23 (s, arom.), 129.11 (s, arom.), 128.73 (s, arom.),
128.48 (s, arom.), 108.45 (m, J 265.5, 31.75 Hz, CF2CF2CF2COOR),
106.94 (m, J 267.95, 33.6 Hz, CF2CF2COOR), 93.39 (m, J 319.8, 41.5 Hz,
ICF2CF2CF2), 69.75 (s, COCH2). 7: MS (CI, m/z): 561 [M + NH4]+, 543
[M]+. Anal. Found: C, 61.29; H, 5.87; N, 2.61. Calc. C, 61.87; H, 5.74; N,
2.57. IR (KBr, cm21): 3649 (OH), 2921.5 (C–H asym.), 2850.3 (C–H sym.),
2246.1 (CN), 1781.8 (CNO), 1603.7 (CNC), 1178.1, 1142.5 (C–F), 827.0
(C–H, out of plane). 1H NMR ([2H6]acetone, 300 MHz, d) 8.19 (s, 1 H,
COOH), 7.79 (4 H, arom.), 7.67 (2 H, J 9.18 Hz, arom.), 7.05 (2 H, J 9.18
Hz, arom.), 4.03 (t, 2 H, J 6.6 Hz, OCH2), 2.13 (m, 2 H, CH2CF2), 1.78 (qnt,
2 H, J 6.6 Hz, CH2CH2CF2), 1.2 (m, alkyl). 13C NMR ([2H6]acetone, 75
MHz, d) 160.86 (s, arom.), 160.75 (t, J 28.7 Hz, CF2COOH), 145.87 (s,
arom.), 133.46 (s, arom.), 131.80 (s, arom.), 129.17 (s, arom.), 127.86 (s,
arom.), 119.61 [m, J 251.4, 31 Hz, (CH2)11CF2CF2CF2], 119.51 (s, CN),
115.94 (s, arom.), 112.06 (m, J 263 Hz, CF2CF2CF2COOH), 110.84 (s,
arom.), 109.57 (m, J 263, 32 Hz, CF2CF2COOH), 68.72 (s, OCH2), 31.43
[t, J 22 Hz, CH2(CF2)3], 29.8 (CH2), 26.76 [s, OCH2CH2CH2(CH2)8], 20.94
[s, (CH2)9CH2CH2(CF2)3].
References
1 V. C. R. McLoughlin and J. Thrower, Tetrahedron, 1969, 25, 5921.
2 R. N. Haszeldine, J. Chem. Soc., 1962, 4491; N. O. Brace, J. Org.
Chem., 1962, 27, 4491; 3033.
3 V. V. Titov, T. I. Zverkova, E. I. Kovshev, Yu. N. Fialkov,
S. V. Shelazhenko and L. M. Yagupolski, Mol. Cryst. Liq. Cryst., 1978,
47, 1.
8
001
7
4 P. Kromm, M. Cotrait, J. C. Rouillon, P. Barois and H. T. Ngugen, Liq.
Cryst., 1996, 21, 121 and references therein.
6
5 F. Tournilhac, L. Bosio, J. F. Nicoud and J. Simon, Chem. Phys. Lett.,
1988, 145, 482.
002
6 R. N. Haszeldine, Nature, 1951, 167, 139; V. Tortelli and C. Tonelli,
J. Fluorine Chem., 1990, 47, 199 and references therein.
7 V. C. R. McLoughlin, Tetrahedron Lett., 1968, 46, 4761.
8 F. Tournilhac, L. Bosio, J. Simon, L. M. Blinov and S. V. Yablonsky,
Liq. Cryst., 1993, 14, 405; E. Dietzmann, W. Weissflog, S.
Markscheffel, A. Ja´kli, D. Lose and S. Diele, Ferroelectrics, 1996, 180,
341; P. Kromm, M. Cotrait and H. T. Nguyen, Liq. Cryst., 1996, 21,
95.
5
4
3
9 B. I. Ostrovskii, F. G. Tournilhac, L. M. Blinov and W. Haase, J. Phys.
II (France), 1995, 5, 979; M. Ibn-Elhaj, H. J. Coles, D. Guillon and
A. Skoulios, J. Phys. II (France), 1993, 3, 1807.
003
2
10 J. G. Jegal and A. Blumstein, J. Polym. Sci. A, 1995, 33, 2673;
D. Markovitsi, A. Mathis, J. Simon, J.-C. Wittman and J. le Moigne,
Mol. Cryst. Liq. Cryst. Lett., 1980, 64, 121.
11 G. Friedel, Ann. Phys. (France), 1922, 18, 273.
12 G. W. Gray and J. W. Goodby, Smectic Liquid Crystals, Leonard Hill,
Glasgow, 1984.
1
5
15
20
25
0
10
2θ / °
Fig. 1 X-Ray (Debye–Scherrer) diffraction diagram of compound 8
recorded at 150 °C (densitometric profile of the photographic film)
13 D. Demus and H. Richter, Textures of liquid crystals, Verlag Chemie,
Weinheim, 1978.
14 F. Hardouin, A. M. Levelut, M. F. Achard and G. Sigaud, J. Chim.
Phys., 1983, 80, 53; D. Guillon and A. Skoulios, J. Phys. (France),
1984, 45, 607.
15 S. Ujiie and K. Iimura, Macromolecules, 1992, 25, 3174.
16 A. Skoulios, Adv. Colloid Interface Sci., 1967, 1, 79.
17 T. Kato and J. M. J. Fre´chet, Macromolecules, 1989, 22, 3819;
J. M. Lehn, Angew. Chem., Int. Ed. Engl., 1990, 29, 1304; C.
Alexander, C. P. Jariwala, C. M. Lee and A. C. Griffin, Polym. Prepr.,
1993, 34, 168.
Fig. 2 Polar rows of molecules expected from polyphilic compounds
bearing hydrogen-bond donor and acceptor groups at the extremities
Received, 3rd January 1997; Com. 7/00085E
442
Chem. Commun., 1997