C O M M U N I C A T I O N S
(3) Halcrow, M.; Phillips, S.; Knowles, P. Enzyme Catalyzed Electron and
Radical Transfer; Kluwer Academic/Plenum Publishers: New York, 2000;
Vol. 35, pp 183-231.
(4) McGuirl, M. A.; Dooley, D. M. Curr. Opin. Chem. Biol. 1999, 3, 138-
144.
(5) Klinman, J. P. Chem. ReV. 1996, 96, 2541-2561.
(6) Dooley, D. M. J. Biol. Inorg. Chem. 1999, 4, 1-11.
(7) Mure, M.; Mills, S. A.; Klinman, J. P. Biochemistry 2002, 41, 9269-
9278.
(8) Wilce, C. J.; Dooley, D. M.; Freeman, H. C.; Guss, J. M.; Matsunami,
H.; McIntire, W. S.; Ruggiero, C. E.; Tanizawa, K.; Yamaguchi, H.
Biochemistry 1997, 36, 16116-16133.
(9) Gray, H. B.; Winkler, J. R. Annu. ReV. Biochem. 1996, 65, 537-561.
(10) Ponce, A.; Gray, H. B.; Winkler, J. R. J. Am. Chem. Soc. 2000, 122,
8187-8191.
(11) Other methods that have been employed to promote electron tunneling to
distant donors or acceptors include “wiring” redox enzymes into conduc-
tive polymer or gel films as signaling relays in electrochemical
biosensors;12-17 exploiting association of proteins to functionalize self-
assembled monolayers;18-20 and using protein films21-29 to allow elec-
trochemical access to redox-active cofactors.
(12) Heller, A. J. Phys. Chem. 1992, 96, 3579-3587.
Figure 2. DEA-OPE-SH modeled into the substrate channel of AGAO.
Channel residues are purple, TPQ is red, and the Cu site is blue.
(13) Degani, Y.; Heller, A. J. Am. Chem. Soc. 1988, 110, 2615-2620.
(14) Degani, Y.; Heller, A. J. Am. Chem. Soc. 1989, 111, 2357-2358.
(15) Raitman, O. A.; Katz, E.; Buckmann, A. F.; Willner, I. J. Am. Chem.
Soc. 2002, 124, 6487-6496.
gave maximum surface concentrations on the order of ∼1 pmol/
cm2. On the basis of crystallographic parameters,8 this corresponds
to ∼25% monolayer coverage by the enzyme. Gradual loss of
electrochemical signals resulted from prolonged exposure of the
AGAO-modified electrodes to buffer solutions, possibly due to slow
dissociation of the protein from the wire-modified surface. Substrate
inhibition experiments have demonstrated that wires similar to
DEA-OPE-SH bind tightly to AGAO, with estimated dissociation
constants of ∼10 µM.31 Addition of micromolar phenethylamine
solutions completely quenches the electrochemical response in the
cell, providing further evidence that the enzyme specifically binds
to the electrode by insertion of the adsorbed thiol wire into the
substrate channel. As phenethylamine displaces DEA-OPE-SH from
this channel, the enzyme is decoupled from the electrode.
(16) Kenausius, G.; Chen, Q.; Heller, A. Anal. Chem. 1997, 69, 1054-1060.
(17) Cosnier, S. Biosens. Bioelectron. 1999, 14, 443-456 and references
therein.
(18) Tarlov, M. J.; Bowden, E. F. J. Am. Chem. Soc. 1991, 113, 1847-1849.
(19) Feng, Z. Q.; Imabayashi, S.; Kakiuchi, T.; Niki, K. J. Chem. Soc., Faraday
Trans. 1997, 93, 367-371.
(20) Wei, J. J.; Liu, H. Y.; Dick, A. R.; Yamamoto, H.; He, Y. F.; Waldeck,
D. H. J. Am. Chem. Soc. 2002, 124, 9591-9599.
(21) Jeuken, L. J. C.; Jones, A. K.; Chapman, S. K.; Cecchini, G.; Armstrong,
F. A. J. Am. Chem. Soc. 2002, 124, 5702-5713.
(22) Butt, J. N.; Anderson, L. J.; Robio, L. M.; Richardson, D. J.; Flores, E.;
Herrero, A. Bioelectrochemistry 2002, 56.
(23) Armstrong, F. A. J. Chem. Soc., Dalton Trans. 2002, 661-671 and
references therein.
(24) Munge, B.; Pendon, Z.; Frank, H. A.; Rusling, J. F. Bioelectrochemistry
2001, 54, 145-150.
(25) Njue, C. K.; Rusling, J. F. J. Am. Chem. Soc. 2000, 122, 6459-6453.
(26) Ma, H. Y.; Hu, N. F.; Rusling, J. F. Langmuir 2000, 16, 4969-4975.
(27) Lin, R.; Immoos, C.; Farmer, P. J. J. Biol. Inorg. Chem. 2000, 5, 738-
747.
AGAO is electroinactive at underivatized gold surfaces, high-
lighting the importance of wire interactions with the protein in
establishing electronic coupling with the active site (Figure 2).
Studies of electron tunneling through phenyl-alkynyl bridges in self-
assembled monolayers suggest that the distance decay constant is
(28) Bayachou, M.; Elkbir, L.; Farmer, P. J. Inorg. Chem. 2000, 39, 289-
293.
(29) Bayachou, M.; Lin, R.; Cho, W.; Farmer, P. J. J. Am. Chem. Soc. 1998,
120, 9888.
(30) Full synthetic details are in the Supporting Information.
(31) Hess, C. R. Chemistry; California Institute of Technology: Pasadena, 2002.
(32) Creager, S.; Yu, C. J.; Bamdad, C.; O’Connor, S.; MacLean, T.; Lam,
E.; Chong, Y.; Olsen, G. T.; Luo, J.; Gozin, M.; Kayyem, J. F. J. Am.
Chem. Soc. 1999, 121, 1059-1064.
(33) Sachs, S. B.; Dudek, S. P.; Hsung, R. P.; Sita, L. R.; Smalley, J. F.;
Newton, M. D.; Feldberg, S. W.; Chidsey, C. E. D. J. Am. Chem. Soc.
1997, 119, 10563-10564.
(34) The electrodes were prepared by heating a gold wire (0.5 mm diameter)
slowly in a hydrogen flame until a gold drop formed at the end of the
wire. AFM measurements revealed that the gold-bead surface was mainly
Au(111), with flat terraces extending 50-200 µm. The electrodes were
etched in boiling sulfuric acid for 30 min, and then electrochemically
cycled in 1 M H2SO4 between 1.5 and -0.3 V versus Ag/AgCl for 30
min (scan rate 20 mV/s); they were then sonicated for several minutes
prior to wire modification.
substantially lower (0.4-0.6 Å-1 32,33
than that for tunneling through
)
peptides (1.1 Å-1) or water (1.7 Å-1).9 Assuming a normal protein
reorganization energy (0.8 eV),39 we estimate ko > 4 × 104 s-1
(∆G° ) 0) for tunneling through the 22-Å wire; the corresponding
rate through polypeptide would be ∼3 s-1, and that through water
would be <10-4 s-1. Importantly, the CVs obtained at scan rates
up to 1 V/s place a lower limit of 103 s-1 for tunneling to the TPQ,
confirming that the DEA-wire is the coupling element at this
distance.
Acknowledgment. This work is dedicated to the memory of
Eraldo Antonini (per il ventesimo anniversario della sua morte, 19
Marzo 2003), a giant in metallobiochemistry. We thank R. Tanimura
and K. Niki for assistance in the preparation of Au-bead electrodes
and for helpful discussions. This work was supported by NIH
(C.R.H., J.R.W., H.B.G., G.A.J., D.M.D.) and the David and Lucille
Packard Foundation Initiative for Interdisciplinary Research (R.N.A.,
M.G.H.).
(35) Kakiuchi, T.; Sato, K.; Iida, M.; Hobara, D.; Imabayashi, S.; Niki, K.
Langmuir 2000, 16, 7238-7244.
(36) All electrochemical measurements were carried out using a BAS CV5-W
electrochemical analyzer. The electrochemical cell consisted of a small
volume (200-300 µL), three-electrode, two-compartment glass cell. A
saturated calomel electrode (SCE) served as the reference electrode, and
a Pt wire served as the auxiliary electrode. The reference compartment
was separated from the working solution by a modified Luggin capillary.
Measurements were made at ambient temperature in deoxygenated, 10
mM KPi, pH 6-8.
(37) The voltammetric wave widths are slightly broader than the expected
values for a two-electron couple, possibly because of inhomogeneities
within the films; the small peak separation at slow scan rates may reflect
similar inhomogeneity in electron-transfer rates. See, for example: Rowe,
G. K.; Carter, M. T.; Richardson, J. N.; Murray, R. W. Langmuir 1995,
11, 1797-1806. Alternatively, CV broadening could be due to a
breakdown in cooperativity resulting from stabilization of the semiquinone
radical in the enzyme.
Supporting Information Available: Details of protein preparation,
DEA-OPE-SH synthesis, binding studies, and electrochemical measure-
ments (PDF). This material is available free of charge via the Internet
(38) Mure, M.; Klinman, J. P. J. Am. Chem. Soc. 1993, 115, 7117-7127.
(39) Winkler, J. R.; Wittung-Stafshede, P.; Leckner, J.; Malmstro¨m, B. G.;
Gray, H. B. Proc. Natl. Acad. Sci. U.S.A. 1997, 94, 4246-4249.
References
(1) Hill, H. A. O.; Hunt, N. I. Methods Enzymol. 1993, 227, 501-522.
(2) Hill, H. A. O. Coord. Chem. ReV. 1996, 151, 115-123.
JA029538Q
9
J. AM. CHEM. SOC. VOL. 125, NO. 24, 2003 7157