A. A. El-Shehawy et al. / Tetrahedron Letters 51 (2010) 4526–4529
4529
S.; Neugebauer, H.; Sariciftci, N. S. Chem. Rev. 2007, 107, 1324–1338; (e) Günes,
S.; Baran, D.; Günbas, G.; Özyurt, F.; Fuchsbauer, A.; Sariciftci, N. S.; Toppare, L.
Sol. Energy Mater. Sol. Cells 2008, 92, 1162–1169; (f) Wu, P.-T.; Xin, H.; Kim, F. S.;
Ren, G.; Jenekhe, S. A. Macromolecules 2009, 42, 8817–8826; (g) Wu, C.-G.; Lai,
C.-Y.; Hsiao, N.-L. Eur. Polym. J. 2009, 45, 879–887; (h) Lanzi, M.; Paganin, L.
React. Funct. Polym. 2010, 70, 346–360.
3-hexyl-2-iodothiophene with sodium 4-hexylthiophene-2-boro-
nate in the presence of Pd(PPh3)4.18 The aforementioned results
indicated that lithiation of the 2nd position of 2-bromo-4-hexyl-
thiophene (5b) becomes more regioselective than lithiation of
the 5th position compared to lithiation of 3-hexylthiophene (1b).
In conclusion, we have developed a selective method for the
synthesis of 2-bromo-4-alkylthiophenes (5a–c) in high yields
(>90%). The present method is superior to the previously reported
methods for their synthesis.6,15e Dihexyl-2,20-bithophenes 8 and 9
were readily synthesized via Kumada and Suzuki cross-coupling
methods and the yields of the desired products, in most cases, were
superior to those reported in the literatures. We believe that the
proposed synthetic method can be used for the step-wise construc-
tion of oligo- and polythiophenes with well-defined structures. To
investigate the optical and electrical properties of oligo- and poly-
ATs, further syntheses are currently being developed.
3. (a) Pal, S.; Nandi, A. K. Macromolecules 2003, 36, 8426–8432; (b) Al-Ibrahim, M.;
Roth, H.-K.; Schroedner, M.; Konkin, A.; Zhokhavets, U.; Gobsch, G.; Scharff, P.;
Sensfuss, S. Org. Electron. 2005, 6, 65–77; (c) Vandeleene, S.; Bergh, K. V.;
Verbiest, T.; Koeckelberghs, G. Macromolecules 2008, 41, 5123–5131; (d) Arosio,
P.; Moreno, M.; Famulari, A.; Raos, G.; Catellani, M.; Meille, S. V. Chem. Mater.
2009, 21, 78–87; (e) Cai, W.; Gong, X.; Cao, Y. Sol. Energy Mat. Sol. Cells 2010, 94,
114–127.
4. (a) Trznadel, M.; Porn, A.; Zagorska, M.; Chrzaszcz, R.; Pielichowski, J.
Macromolecules 1998, 31, 5051–5058; (b) Chou, Y.-M.; Chen, W.-H.; Liang, C.-
C. J. Mol. Struct. Theor. Chem. 2009, 894, 117–120.
5. (a) Sato, M.; Morii, H. Macromolecules 1991, 24, 1196–1200; (b) Sato, M.; Morii,
H. Polym. Commun. 1991, 32, 436–438; (c) ZagSrska, M.; Kulszewicz-Bajer, I.
Synth. Met. 1991, 45, 385–393; (d) Chen, T.-A.; Rieke, R. D. J. Am. Chem. Soc.
1992, 114, 10087–10088; (e) Louarn, G.; Kruszka, J.; Lefrant, S. Synth. Met. 1993,
61, 233–238; (f) Barbarella, G.; Bongini, A.; Zambianchi, M. Macromolecules
1994, 27, 3039–3045; (g) Chen, T.-A.; Wu, X.; Rieke, R. D. J. Am. Chem. Soc. 1995,
117, 233–244; (h) Andreani, F.; Angiolini, L.; Grenci, V.; Salatelli, E. Synth. Met.
2004, 145, 221–227.
Acknowledgments
6. Loewe, R. S.; Ewbank, P. C.; Liu, J.; Zhai, L.; McCullough, R. D. Macromolecules
2001, 34, 4324–4333.
7. Jeffries-El, M.; Sauvé, G.; McCullough, R. D. Macromolecules 2005, 38, 10346–
10352.
8. (a) Kumada, M.; Tamao, K.; Sumitani, K. Org. Synth. 1978, 58, 127–131; (b)
Tamao, T.; Komada, S.; Nakajima, I.; Kumada, M. Tetrahedron 1982, 28, 3347–
3354; (c) van Pham, C.; Burkhardt, A.; Shabana, R.; Cunningham, D. D.; Mark Jr,
H. B.; Zimmer, H. Phosphorous, Sulfur Silicon Relat. Elem. 1989, 46, 153–168; (d)
Zimmer, H.; Shabana, R.; Galal, A.; Mark, H. B., Jr.; Gronowitz, S.; Hörnfeldt, A. B.
Phosphorous, Sulfur Silicon Relat. Elem. 1989, 42, 171–176.
This work was supported by the Program for Integrated Molec-
ular Systems (PIMS) and the World Class University (WCU) Pro-
gram, Korea (Project No. R31-20008-000-10026-0). (RISE), Korea.
The author (A.A.E.-S.) would like to thank the Korean Brain Pool
Program supported by the Korean Federation of Science and Tech-
nology Societies (KOFST).
9. Beryozkina, T.; Senkovskyy, V.; Kaul, E.; Kiriy, A. Macromolecules 2008, 41,
7817–7823.
Supplementary data
10. (a) Miyaura, N.; Ishiyama, T.; Sasaki, H.; Ishikawa, M.; Satoh, M.; Suzuki, A. J.
Am. Chem. Soc. 1989, 111, 314–321; (b) Guillerez, S.; Bidan, G. Synth. Met. 1998,
93, 123–126.
11. (a) Li, J.-C.; Lee, S.-H.; Hahn, Y.-B.; Kim, K.-J.; Zongb, K.; Lee, Y.-S. Synth. Met.
2008, 158, 150–156; (b) Li, J.-C.; Lee, H.-Y.; Lee, S.-H.; Zong, K.; Jin, S.-H.; Lee, Y.-
S. Synth. Met. 2009, 159, 201–208.
12. Kong, H.; Chung, D. S.; Kang, I.-N.; Lim, E.; Jung, Y. K.; Park, J.-H.; Park, C. E.;
Shim, H.-K. Bull. Korean Chem. Soc. 2007, 28, 1945–1950.
13. (a) McCullough, R. D.; Lowe, R. D.; Jayaraman, M.; Anderson, D. L. J. Org. Chem.
1993, 58, 904–912; (b) Hoffmann, K. J.; Carlsen, P. H. J. Synth. Commun. 1999,
29, 1607–1610; (c) Yokoyama, A.; Miyakoshi, R.; Yokozawa, T. Macromolecules
2004, 37, 1169–1171.
Supplementary data (experimental details and the spectral data
for the synthesized 2-bromo-4-alkylthiophenes) associated with
this article can be found, in the online version, at doi:10.1016/
References and notes
1. (a) Fichou, D. J. Mater. Chem. 2000, 10, 571–588; (b) Otsubo, T.; Aso, Y.;
Takimiya, K. J. Mater. Chem. 2002, 12, 2565–2575; (c) Barbarella, G. Electron.
Opt. Prop. Conjug. Mol. Syst. Conden. Phases 2003, 79–97; (d) Hotta, S.; Ichino, Y.;
Yoshida, Y. Electron. Opt. Prop. Conjug. Mol. Syst. Conden. Phases 2003, 615–635;
(e) Hotta, S. Trans. Mater. Res. Soc. Jpn. 2004, 29, 985–990; (f) James, D. K.; Tour,
J. M. Top. Curr. Chem. 2005, 257, 33–62; (g) Otsubo, T.; Aso, Y.; Takimiya, K. Pure
Appl. Chem. 2005, 77, 2003–2010; (h) Perepichka, I. F.; Perepichka, D. F.; Meng,
H.; Wudl, F. Adv. Mater. 2005, 17, 2281–2305; (i) Locklin, J.; Roberts, M.;
Mannsfeld, S.; Bao, Z. Polym. Rev. 2006, 46, 79–101; (j) Murphy, A. R.; Frechet, J.
M. J. Chem. Rev. 2007, 107, 1066–1096; (k) Osaka, I.; Mccullough, R. D. Acc.
Chem. Res. 2008, 41, 1202–1214; (l) Briseno, A. L.; Holcombe, T. W.; Boukai, A.
I.; Garnett, E. C.; Shelton, S. W.; Fréchet, J. J. M.; Yang, P. Nano Lett. 2010, 10,
334–340.
14. Chaloner, P. A.; Gunatunga, S. R.; Hitchcock, P. B. J. Chem. Soc., Perkin Trans. 2
1997, 1597–1604.
15. (a) Kellogg, R. M.; Schaap, A. P.; Harper, E. T.; Wynbert, H. J. Org. Chem. 1968, 33,
2902–2909; (b) Reinecke, M. G.; Adickes, H. W.; Pyun, C. J. Org. Chem. 1971, 36,
2690–2692; (c) Mitchell, R. H.; Lai, Y.-H.; Williams, R. V. J. Org. Chem. 1979, 44,
4733–4735; (d) de Meijere, A.; Zhao, L.; Belov, V. N.; Bossi, M.; Noltemeyer, M.;
Hell, S. W. Chem. Eur. J. 2007, 13, 2503–2516; (e) Boyd, S. D.; Jen, A. K.-Y.;
Luscombe, C. K. Macromolecules 2009, 42, 9387–9389.
16. Dohi, T.; Morimoto, K.; Ogawa, C.; Fujioka, H.; Kita, Y. Chem. Pharm. Bull. 2009,
57, 710–713.
17. Yamamoto, T.; Morita, A.; Miyazaki, Y.; Maruyama, T.; Wakayama, H.; Zhou, Z.-
H.; Nakamura, Y.; Kanbara, T.; Sasaki, S.; Kubota, K. Macromolecules 1992, 25,
1214–1223.
2. (a) Kowalik, J.; Tolbert, L. M.; Narayan, S.; Abhiraman, A. S. Macromolecules
2001, 34, 5471–5479; (b) Nguyen, L. H.; Hoppe, H.; Erb, T.; Günes, S.; Gobsch,
G.; Sariciftci, N. S. Adv. Funct. Mater. 2007, 17, 1071–1078; (c) Singh, R.; Kumar,
J.; Singh, R. K.; Rastogi, R. C.; Kumar, V. New J. Phys. 2007, 9, 40–61; (d) Günes,
18. Kirschbaum, T.; Briehn, C. A.; Bäuerle, P. J. Chem. Soc., Perkin Trans. 1 2000,
1211–1216.