10.1002/chem.202004356
Chemistry - A European Journal
FULL PAPER
For experimental details, see Supporting Information.
[15] For more details on the optimization of reaction conditions, see the
Supporting Information.
[16] Serious side reactions are responsible for the unsatisfied yields in the
synthesis of 2-proparylanilines 3v and 3w. Depropargylation,
deallylation, and debenzylation occurred to afford N-methyl-N-
phenylaniline as a by-product in 10-12% yield.
Acknowledgements
We are grateful for the financial support from the National
Natural Science Foundation of China (21772182) and the
Fundamental Research Funds for the Central Universities.
[17] For examples, see: a) H. Yoshida, H. Fukushima, J. Ohshita, A. Kunai,
J. Am. Chem. Soc. 2006, 128, 11040-11041; b) Y. Zeng, L. Zhang, Y.
Zhao, C. Ni, J. Zhao, J. Hu, J. Am. Chem. Soc. 2013, 135, 2955-2958;
c) Y. Zeng, J. Hu, Chem. Eur. J. 2014, 20, 6866-6870; d) J. M. Medina,
J. L. Mackey, N. K. Garg, K. N. Houk, J. Am. Chem. Soc. 2014, 136,
15798-15805.
Keywords: amines • ammonium salts • arynes • aza-Claisen
rearrangement • indoles
[18] a) S. S. Bhojgude, T. Kaicharla, A. T. Biju, Org. Lett. 2013, 15, 5452-
5455; b) A. V. Varlamov, N. I. Guranova, T. N. Borisova, F. A. A. Toze,
M. V. Ovcharov, S. Kristancho, L. G. Voskressensky, Tetrahedron 2015,
71, 1175-1181; c) M. Hirsch, S. Dhara, C. E. Diesendruck, Org. Lett.
2016, 18, 980-983; d) Y. Gui, S.-K. Tian, Org. Lett. 2017, 19, 1554-
1557; e) G. Min, J. Seo, H. M. Ko, J. Org. Chem. 2018, 83, 8417-8425.
[19] The aromatic aza-Claisen rearrangement of ammonium salt 8a did not
occur in the absence of KF and 18-crown-6.
[1]
[2]
[3]
For reviews, see: a) R. P. Lutz, Chem. Rev. 1984, 84, 205-247; b) A. M.
M. Castro, Chem. Rev. 2004, 104, 2939-3002; c) K. C. Majumdar, S.
Alam, B. Chattopadhyay, Tetrahedron 2008, 64, 597-643; d) K. C.
Majumdar, R. K. Nandi, Tetrahedron 2013, 69, 6921-6957.
For reviews, see: a) U. Nubbemeyer, Top. Curr. Chem. 2005, 244, 149-
213; b) K. C. Majumdar, T. Bhattacharyya, B. Chattopadhyay, B. Sinha,
Synthesis 2009, 13, 2117-2142; c) J.-W. Jung, S.-H. Kim, Y.-G. Suh,
Asian J. Org. Chem. 2017, 6, 1117-1129.
[20] Erosion of enantiopurity can also occur during the aromatic aza-Claisen
rearrangement.
[21] We failed to isolate 2-allenylaniline 12a (R1 = R3 = R4 = Me, R2 = Ph, R
= H) from the reaction mixture of propargylamine 1b and benzyne
precursor 2a after it was run for 10 min under the standard conditions.
Gratifyingly, 1H NMR spectroscopic analysis of the crude product
indicated the formation of 2-allenylaniline 12a in a trace amount by
assigning the allenyl proton signal at δ 5.08 (q, J = 6.4 Hz, 1H) and the
methyl proton signal at δ 1.80 (d, J = 6.4 Hz, 3H).
2-Allenylanilines were proposed to be generated as key intermediates
via the aromatic aza-Claisen rearrangement in the transformation of N-
propargylanilines into 1,2-dihydroquinolines or indoles in the presence
of acids or transition metals. See: a) P. Barmettler, H.-J. Hansen, Helv.
Chim. Acta. 1990, 73, 1515-1573; b) A. Saito, A. Kanno, Y. Hanzawa,
Angew. Chem. Int. Ed. 2007, 46, 3931-3933; c) A. Saito, S. Oda, H.
Fukaya, Y. Hanzawa, J. Org. Chem. 2009, 74, 1517-1524; d) N. Sakai,
K. Enomoto, M. Takayanagi, T. Konakahara, Y. Ogiwara, Tetrahedron
Lett. 2016, 57, 2175-2178.
[22] a) H. Trauer, G. Haufe, Synthesis 1985, 3, 343-344; b) T. J. Grattan, J.
S. Whitehurst, J. Chem. Soc. Perkin Trans. 1 1990, 11-18; c) J. D.
Spence, J. K. Wyatt, D. M. Bender, D. K. Moss, M. H. Nantz, J. Org.
Chem. 1996, 61, 4014-4021; d) C.-L. Fu, S.-M. Ma, Chin. J. Chem.
2005, 23, 729-732; e) H. Maurer, H. Hopf, Eur. J. Org. Chem. 2005,
2702-2707; f) Y.-L. Ji, J.-J. Luo, J.-H. Lin, J.-C. Xiao, Y.-C. Gu, Org.
Lett. 2016, 18, 1000-1003; g) C. A. Umaꢀa, J. A. Cabezas, J. Org.
Chem. 2017, 82, 9505-9514; h) L. Gao, Z. Li, Synlett 2019, 30, 1580-
1584.
[4]
[5]
[6]
R. Nallagonda, M. Rehan, P. Ghorai, J. Org. Chem. 2014, 79, 2934-
2943.
K. Tateno, R. Ogawa, R. Sakamoto, M. Tsuchiya, N. Kutsumura, T.
Otani, K. Ono, H. Kawai, T. Saito, J. Org. Chem. 2018, 83, 690-702.
For reviews on the synthesis of indoles, see: a) G. R. Humphrey, J. T.
Kuethe, Chem. Rev. 2006, 106, 2875-2911; b) K. Krüger, A. Tillack, M.
Beller, Adv. Synth. Catal. 2008, 350, 2153-2167; c) I. Kumar, R. Kumar,
U. Sharma, Synthesis 2018, 50, 2655-2677; d) J. S. S. Neto, G. Zeni,
Org. Chem. Front. 2020, 7, 155-210.
[23] a) K. Cariou, B. Ronan, S. Mignani, L. Fensterbank, M. Malacria,
Angew. Chem. Int. Ed. 2007, 46, 1881-1884; b) D. Susanti, L. L. R. Ng,
P. W. H. Chan, Adv. Synth. Catal. 2014, 356, 353-358.
[7]
[8]
A. A. Cant, G. H. V. Bertrand, J. L. Henderson, L. Roberts, M. F.
Greaney, Angew. Chem. Int. Ed. 2009, 48, 5199-5202.
[24] J. Sheng, S. Li, J. Wu, Chem. Commun. 2014, 50, 578-580.
For recent reviews on arynes, see: a) A. Bhunia, S. R. Yetra, A. T. Biju,
Chem. Soc. Rev. 2012, 41, 3140-3152; b) A. V. Dubrovskiy, N. A.
Markina, R. C. Larock, Org. Biomol. Chem. 2013, 11, 191-218; c) C.
Wu, F. Shi, Asian J. Org. Chem. 2013, 2, 116-125; d) A. E. Goetz, T. K.
Shah, N. K. Garg, Chem. Commun. 2015, 51, 34-45; e) S. S. Bhojgude,
A. Bhunia, A. T. Biju, Acc. Chem. Res. 2016, 49, 1658-1670; f) J.-A.
García-López, M. F. Greaney, Chem. Soc. Rev. 2016, 45, 6766-6798;
g) Y. Zeng, J. Hu, Synthesis 2016, 48, 2137-2150; h) J. Shi, Y. Li, Y. Li,
Chem. Soc. Rev. 2017, 46, 1707-1719; i) M. Feng, X. Jiang, Synthesis
2017, 49, 4414-4433; j) T. Roy, A. T. Biju, Chem. Commun. 2018, 54,
2580-2594; k) T. Matsuzawa, S. Yoshida, T. Hosoya, Tetrahedron Lett.
2018, 59, 4197-4208; l) S. Ghorai, D. Lee, Synlett 2020, 31, 750-771;
m) J. He, D. Qiu, Y. Li, Acc. Chem. Res. 2020, 53, 508-519.
N. S. V. M. R. Mangina, R. Guduru, G. V. Karunakar, Org. Biomol.
Chem. 2018, 16, 2134-2142.
[9]
[10] T. Aoki, S. Koya, R. Yamasaki, S. Saito, Org. Lett. 2012, 14, 4506-4509.
[11] S. J. Kaldas, E. Kran, C. Mück-Lichtenfeld, A. K. Yudin, A. Studer,
Chem. Eur. J. 2020, 26, 1501-1505.
[12] a) J. Zhang, Z.-X. Chen, T. Du, B. Li, Y. Gu, S.-K. Tian, Org. Lett. 2016,
18, 4872-4875; b) T. Roy, M. Thangaraj, T. Kaicharla, R. V. Kamath, R.
G. Gonnade, A. T. Biju, Org. Lett. 2016, 18, 5428-5431; c) S. G. Moss, I.
A. Pocock, J. B. Sweeney, Chem. Eur. J. 2017, 23, 101-104; d) X. Pan,
Y. Ma, Z. Liu, Org. Biomol. Chem. 2018, 16, 7393-7399.
[13] M.-G. Zhou, R.-H. Dai, S.-K. Tian, Chem. Commun. 2018, 54, 6036-
6039.
[14] Y. Himeshima, T. Sonoda, H. Kobayashi, Chem. Lett. 1983, 1211-1214.
6
This article is protected by copyright. All rights reserved.