10.1002/anie.201907606
Angewandte Chemie International Edition
COMMUNICATION
was obtained with 99% e.e. and 50% deuterium incorporation.
Rate study of deuterium incorporation experiments was
implemented, and the results showed the reducation rate in the
isotope incorporation reaction with D1-glucose proceeds
significantly slower compared with that of D2O (Figure S4). Thus,
the reduction rate with D1-glucose might be much slower than H-
D exchange between the reduced flavin with the solvent (H2O),
leading to less deuterated product (11%). On the other hand, in
the isotope incorporation reaction with D2O, the higher reactive
rate resulted in more deuterated product (50%). This result
supports a mechanism in which Flred is regenerated in situ and
acts as a hydrogen atom donor to enable the reduction of
appropriate carbonyl compounds. Further insight into the
reduction mechanism was obtained by using density functional
theory (DFT) calculations. These results indicate that the
mechanism we propose is also thermodynamically favorable
(∆Go = −13.96 kcal·mol−1, Figure S5 and Table S8).
strategy at hotspots was successfully implemented to improve
this promiscuous function with minimal screening effort. The
origin of enhanced reduction activity of CHMOAcineto mutants was
rationalized by computational simulation. Future research will
focus on extending the application of this new biocatalytic
reaction.
Acknowledgements
The financial support from National Natural Science Foundation
of China (21574113) and Zhejiang Provincial Natural Science
Foundation (LY19B020014) is gratefully acknowledged.
Keywords: Cyclohexanone monooxygenases
•
Catalytic
promiscuity • Protein engineering • Reductase • Volume-based
library
[1]
Reviews of enzyme catalysis in organic and pharmaceutical chemistry:
a) Biocatalysis in the Pharmaceutical and Biotechnology Industries,
(Eds: R. N. Patel), CRC Press, 2006; b) A. Goswami, J. D. Stewart,
Organic Synthesis Using Biocatalysts, Academic Press, 2015; c)
Enzyme Catalysis in Organic Synthesis (Eds: K. Drauz, H. Gröger, O.
May), Wiley-VCH, Weinheim, 2012; d) K. Faber, Biotransformations in
Organic Chemistry: A Textbook, Springer, Stuttgart, 2011; e) A. Liese,
K. Seelbach, C. Wandrey, Industrial Biotransformations, Wiley-VCH,
Weinheim, 2006.
[2]
[3]
a) I. Nobeli, A. D. Favia, J. M. Thornton, Nat. Biotechnol. 2009, 27, 157-
167; b) K. Hult, P. Berglund, Trends Biotechnol. 2007, 25, 231-238: c)
U. T. Bornscheuer, R. J. Kazlauskas, Angew. Chem. Int. Ed. 2004, 43,
6032-6040.
a) B. A. Sandoval, A. J. Meichan, T. K. Hyster, J. Am. Chem. Soc. 2017,
139, 11313-11316; b) K. F. Biegasiewicz, S. J. Cooper, M. A.
Emmanuel, D. C. Miller, T. K. Hyster, Nat. Chem. 2018, 10, 770-775;
c) B. A. Sandoval, S. I. Kurtoic, M. M. Chung, K. F. Biegasiewicz, T. K.
Hyster, Angew. Chem.-Int. Edit. 2019, doi: 10.1002/anie.201902005; d)
J. Vilim, T. Knaus, F. G. Mutti, Angew. Chem.-Int. Edit. 2018, 57,
14240-14244; e) M. Engleder, G. A. Strohmeier, H. Weber, G.
Steinkellner, E. Leitner, M. Müller, D. Mink, M. Schurmann, K. Gruber,
H. Pichler, Angew. Chem.-Int. Edit. 2019, 58, 7480-7484.
[4]
H. Jochens, K. Stiba, C. Savile, R. Fujii, J. G. Yu, T. Gerassenkov, R. J.
Kazlauskas, U. T. Bornscheuer, Angew. Chem.-Int. Edit. 2009, 48,
3532-3535.
Figure 6. MD simulations for gaining insight into the origins of activity
improvement with WT-CHMO (a) and L143F (b).
[5]
[6]
M. A. Emmanuel, N. R. Greenberg, D. G. Oblinsky, T. K. Hyster, Nature
2016, 540, 414-+.
Finally, the docking and MD experiments were implemented to
gain insight into the origins of high activity of L143F in
comparison with WT. As shown in Figure 6, when compared
with WT-CHMO, the nature of the binding pocket is dramatically
altered by mutation L143F, especially the possible T-shaped π-π
interaction between L143F and NADP+.[19] The average distance
between the carbon atom in carbonyl moiety of 1a and the
hydrogen atom on N5 of Flred is clearly shorter in L143F than in
WT (3.8 Å in L143F vs 9.8 Å in WT), according to the analysis of
25 ns trajectory of MD simulation (Figure S6). This is a
requirement for the substrate to undergo hydride transfer from
Flred with formation of the reduction product 2a.
a) S. B. J. Kan, X. Y. Huang, Y. Gumulya, K. Chen, F. H. Arnold,
Nature 2017, 552, 132-+; b) C. K. Prier, R. K. Zhang, A. R. Buller, S.
Brinkmann-Chen, F. H. Arnold, Nat. Chem. 2017, 9, 629-634; c) S. B. J.
Kan, R. D. Lewis, K. Chen, F. H. Arnold, Science 2016, 354, 1048-
1051; d) R. K. Zhang, K. Chen, X. Huang, L. Wohlschlager, H. Renata,
F. H. Arnold, Nature 2019, 565, 67-72; e) I. Cho, Z.-J. Jia, F. H. Arnold,
Science 2019, 364, 575-578; f) A. Tinoco, V. Steck, V. Tyagi, R. Fasan,
J. Am. Chem. Soc. 2017, 139, 5293-5296; g) R. Fasan, Nat. Chem.
2017, 9, 609-611.
[7]
Selected reviews of BVMOs: a) K. Balke, A. Beier, U. T. Bornscheuer,
Biotechnol. Adv., 2018, 36, 247-263; b) J. Dong, E. Fernández-Fueyo,
F. Hollmann, C. E. Paul, M. Pesic, S. Schmidt, Y. Wang, S. Younes, W.
Zhang, Angew. Chem. Int. Ed., 2018, 57, 9238-9261; c) Z. G. Zhang, L.
P. Parra, M. T. Reetz, Chem. Eur. J., 2012, 18, 10160-10172; d) H.
Leisch, K. Morley, P. C. K. Lau, Chem. Rev., 2011, 111, 4165-4222; e)
D. E. Torres Pazmiño, H. M. Dudek, M. W. Fraaije, Curr. Opin. Chem.
Biol., 2010, 14, 138-144.
In summary, we report a mechanistically novel biocatalytic
carbonyl
reduction
catalyzed
by
a
Baeyer−Villiger
monooxygenase (BVMO). It is a new case of a promiscuous
enzyme-catalyzed transformation, enabled by the cofactor FAD
that has not been observed in any other FAD-dependent
monooxygenase known in nature. Whereas WT-CHMOAcineto
displayed only a very limited ability to catalyze the model
reaction 1a→2a, rational design based on a volume-scanning
[8]
Selected studies of protein engineering of BVMOs: a) M. T. Reetz, B.
Brunner, T. Schneider, F. Schulz, C. M. Clouthier, M. M. Kayser,
Angew. Chem.-Int. Edit. 2004, 43, 4075-4078; b) D. J. Opperman, M. T.
Reetz, Chembiochem 2010, 11, 2589-2596; c) S. Schmidt, M. Genz, K.
Balke, U. T. Bornscheuer, J. Biotechnol. 2015, 214, 199-211; d) G. Li,
This article is protected by copyright. All rights reserved.