2500
Organometallics 1997, 16, 2500-2502
Eth ylen e P olym er iza tion w ith Ha lf-Sa n d w ich Allyl Im id o
Com p lexes of Ta n ta lu m
David M. Antonelli,† Ann Leins, and J effrey M. Stryker*
Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G2G2
Received April 24, 1997X
Summary: The imido-based half-sandwich complex
Cp*Ta(dN(2,6-diisopropylphenyl))(η1-C3H5)(η3-C3H5) (3)
polymerizes ethylene in the presence of [(C6H5)3C]+-
[(C6F5)4B]- or B(C6F5)3, while chloride and alkyl deriva-
tives are inactive in the presence of MAO or alkyl ab-
straction reagents. In contrast, however, Cp*Ta(dNSi-
(tert-butyl)3)Cl2 (5) polymerizes ethylene in the presence
of MAO while Cp*Ta(dNSi(tert-butyl)3)(η1-C3H5)(η3-
C3H5) (6) and Cp*Ta(dNSi(tert-butyl)3)Me2 (4) are es-
sentially inactive in the presence of alkyl abstractors.
as a stable ancillary ligand at early transition metal
centers, it might be expected to function as such in
Ziegler-Natta systems.
Previous attempts to develop a niobium or tantalum
half-sandwich imido catalyst for polymerization of ole-
fins have been largely unsuccessful.12,13 Complexes of
the type [CpTa(dNR)Cl2] and Cp*M(dNR)Cl2 (Cp )
C5H5; Cp* ) C5Me5; R ) tert-butyl, 2,6-diisopropyl; M
) Nb, Ta) are not olefin polymerization catalysts in the
presence of excess methylalumoxane (MAO).14 Fur-
thermore, it has not been possible to generate related
half-sandwich alkyl cations12b from dialkyl precursors
using a wide variety of alkyl abstraction reagents.15 The
reason for the inaccessibility of these species is not
understood, but may be related to the propensity for
imido transmetalation16 or bridging to form inactive
dimeric complexes.12b
To extend our previous investigations of group 4
metallocene bis(allyl) rearrangements17 and the reac-
tions of cationic permethylmetallocene allyl complexes,18
the chemistry of the isoelectronic group 5 half-sandwich
imido template was targeted for development. For
zirconium, the crystalline, thermally, stable 16-electron
complex [Cp*2Zr(C3H5)]+[BPh4]- 1 was shown to be a
single-component catalyst for the polymerization of
ethylene.18a,19 The permethylzirconocene methyl and
Since the first synthesis in the early 1980s,1 there
have been numerous suggestions that half-sandwich
imido complexes of the group 5 metals would display
chemistry similar to that observed for the group 4 bent
metallocenes.2,3 This has been attributed to the isolobal
relationship between the two compound classes,4 and
indeed, several observations of structural and reactivity
similarities have been reported for half-sandwich imido
complexes of tantalum and niobium.4,5 Despite two
recent reports of olefin polymerization activity for imido
complexes of vanadium, however, no reports of active
catalysts derived from the heavier group 5 elements
have been published.6 Because of its small size and
relative inertness, the imido ligand is an attractive
alternative to many other dianionic cyclopentadienyl
ligand equivalents, such as dicarbollide,7 borollide,8
trimethylenemethane,9 and butadiene,10 which have
been used for Ziegler-Natta olefin polymerization.
Since the imido ligand has seen extensive use in ring-
opening metathesis polymerization (ROMP) chemistry11
† Current address: Department of Chemistry, University of Sussex,
Brighton, BN1 9RH, England.
X Abstract published in Advance ACS Abstracts, May 15, 1997.
(1) Mayer, J . M.; Curtis, C. J .; Bercaw, J . E. J . Am. Chem. Soc. 1983,
105, 2651.
(2) Gibson, V. C. J . Chem. Soc., Dalton Trans. 1994, 11, 1607.
(3) Antonelli, D. M.; Mountford, P.; Green, M. L. H. J . Organomet.
Chem. 1992, 438, C4.
hydride cations are intractable solids or oils.15b Polym-
erization catalysis is presumably initiated by isomer-
(4) (a) Gibson, V. C.; Williams, D. N.; Clegg, W.; Hockless, D. C. R.
Polyhedron 1986, 8, 1819. (b) Siemling, U.; Gibson, V. C. J . Organomet.
Chem. 1992, 426, C5. (c) Poole, A. D.; Gibson, V. C.; Clegg, W. J . Chem.
Soc., Chem. Commun. 1992, 237. (d) Williams, D. N.; Mitchell, J . P.;
Poole, A. D.; Siemling, U.; Clegg, W.; Hockless, D. C. R., O’Neil, P. A.;
Gibson, V. C. J . Chem. Soc., Dalton Trans. 1992, 9, 739.
(5) (a) Poole, A. D.; Williams, D. N.; Kenwright, A. M.; Gibson, V.
C.; Clegg, W.; Hockless, D. C. R.; O’Neil, P. A. Organometallics 1993,
12, 2549. Gibson, V. C.; Poole, A. D. J . Chem. Soc., Chem. Commun.
1995, 2261.
(10) Mashima, K.; Fujikawa, S.; Nakamura, A. J . Am. Chem. Soc.
1993, 115, 10990. Mashima, K.; Fujikawa, S.; Tanaka, Y.; Urata, H.;
Oshiki, T.; Tanaka, E.; Nakamura, A. Organometallics 1995, 14, 2633.
(11) (a) Schrock, R. R. Acc. Chem. Res. 1990, 23, 158. (b) Torecki,
R.; Schrock, R. R. J . Am. Chem. Soc. 1990, 112, 2448. (c) Parshall, G.
W.; Nugent, W. A. Chemtech 1988, 18, 184.
(6) (a) CpV(dNtol)Cl2 (tol ) toluyl) in conjunction with MAO or
diethylaluminum chloride, see: Coles, M. P.; Gibson, V. C. Polym. Bull.
1994, 33, 529. An analogous niobium complex showed but marginal
activity. (b) Hydrotris(pyrazolyl)borato imido complexes of vanadium,
see: Scheuer, S.; Fischer, J .; Kress, J . Organometallics 1995, 14, 2627.
(c) Bis(imido) complexes of chromium are also active, see: Poole, A.
D.; Gibson, V. C. J . Chem. Soc., Chem. Commun. 1995, 2261.
(7) (a) Crowther, D. J .; Baenziger, N. C.; J ordan, R. F. J . Am. Chem.
Soc. 1991, 113, 1455. (b) Bazan, G. C.; Schaefer, W. P.; Bercaw, J . E.
Organometallics 1993, 12, 2126.
(12) (a) Antonelli, D. M.; Mountford, P.; Green, M. L. H. J . Orga-
nomet. Chem. 1992, 438, 13. (b) Antonelli, D. M.; Gomes, P. T.;
Mountford, P.; Green, M. L. H. J . Chem. Soc. Dalton, in press.
(13) Gibson, V. C. Personal communication to D.A., 1992.
(14) Coles, P. M.; Dalby, C. I.; Gibson, V. C.; Clegg, W.; Elsegood,
M. R. J . J . Chem. Soc., Chem. Commun. 1995, 1709.
(15) (a) J ordan, R. F. Adv. Organomet. Chem. 1991, 32, 325. (b)
Hlatky, G. G.; Turner, H. W.; Eckman, R. R. J . Am. Chem. Soc. 1989,
111, 13, 763. (c) Turner, H. W. Eur. Patent Application 277004, 1988.
(d) Chien, J . C. W.; Tsai, W.-M.; Rausch, M. D. J . Am. Chem. Soc. 1991
113, 8570. (e) Yang, X.; Stern, C. L.; Marks, T. J . J . Am. Chem. Soc.
1991, 113, 3623. Yang, X.; Stern, C. L.; Marks, T. J . J . Am. Chem.
Soc. 1994, 116, 10015.
(8) (a) Herberich, G. E. J . Organomet. Chem. 1987, 319, 9. (b) Quan,
R. W.; Bazan, G. C.; Kiely, A. F.; Schaefer, W. P.; Bercaw, J . E. J . Am.
Chem. Soc. 1994, 116, 4489.
(9) Bazan, G. C.; Rodriguez, G.; Cleary, B. P. J . Am. Chem. Soc.
1994, 116, 4489.
(16) Mitchell, J . P. Ph.D. Thesis, University of Durham, Durham,
U.K., 1992.
S0276-7333(97)00349-X CCC: $14.00 © 1997 American Chemical Society