K. K. Murthi et al. / Bioorg. Med. Chem. Lett. 10 (2000) 1037±1041
1041
loss of CDK inhibitory activity in ¯avopiridol.8
Removal of the 220-chlorine atom from ¯avopiridol, 1a,
results in about a 10-fold loss in activity; however, a
similar modi®cation has little eect in the ole®n series
(compare 6 and 12). Other variations of the halogen
substituent (7±11,13) on the aromatic ring do not seem to
impair the CDK inhibitory activity. Heterocyclic mod-
i®cations such as pyridyl, 14, also seem to be well toler-
ated. It is noteworthy that the cyclohexyl analogue, 15,
results in a loss of activity. Modi®cation of the ¯avone
nucleus was more consistent with the ¯avopiridol SAR.
The C-5 and C-7 hydroxyl groups are critical for kinase
inhibitory activity. Thus, the corresponding dimethoxy
analogues, 34±43, are devoid of CDK inhibitory activ-
ity. Our results are consistent with the X-ray crystal
structure of 1a with CDK2 which indicates that the C-5
hydroxyl and the ¯avone carbonyl are involved in cri-
tical hydrogen bonds with E81 and L83 in the adenine
binding pocket.9 In addition, the C-ring is solvent
exposed and does not make appreciable protein inter-
actions. It is noteworthy, that in the present study
modication of the D-ring seems to attenuate these
binding interactions to some degree. While in the ¯avo-
piridol series, modi®cation of the C-ring results in at
least a 10-fold loss in activity, the tetrahydropyridine
series seems quite tolerant of changes in the C-ring (7±
15). On the other hand, the interactions with E81 and
L83 seem to be retained, since methylation abrogates
CDK inhibitory activity. The ole®n analogues 6±10 and
13 were tested against the MCF-7 tumor cell line to
measure growth inhibition and showed comparable
activities for both CDK inhibition and inhibition of cell
growth (Table 1). Finally alteration of the ¯avone
nucleus to either a quinol-4-one, 18, or an isocoumarin
nucleus, 19, resulted in reduced activity. This may
re¯ect ineective interactions in the adenine binding
pocket.
Draetta, G. F. Trends Biochem. Sci. 1990, 15, 378. (e) Sherr, C.
J. Cell 1993, 73, 1059.
2. Draetta, G. F. Curr. Opin. Cell Biol. 1995, 6, 842.
3. (a) Harper, J. W. In Checkpoint Controls and Cancer;
Kastan, M. B. Ed.; ICRF, 1997, pp 91±107. (b) Serrano M.
Hannon, G. J. Beach, D. Nature 1993, 366, 704.
4. Serrano, M. Exp Cell Res. 1997, 237, 7.
5. (a) Czech, J.; Homann, D.; Naik, R.; Sedlacek, H. H. Int.
J. Oncol. 1995, 6, 31. (b) Sedlacek, H. H., Homann, D.;
Czech, J.; Kolar, C.; Seeman, G.; Gussow, D.; Bosslet, K.
Chimia 1991, 45, 311.
6. (a) Kaur, G.; Stetler-Stevenson, M.; Sebers, S.; Worland, P.;
Sedlacek, H.; Myers, C.; Czech, J.; Naik, R.; Sausville, E. J.
Natl. Cancer Inst. 1992, 84, 1736. (b) Losiewiecz, M. D.;
Carlson, B. A.; Kaur, G.; Worland, P. J. Biochem. Biophy.
Res. Commun. 1994, 201, 589. (c) Carlson, B. A.; Dubay, M.
M.; Sausville, E. A.; Brizuela, L.; Worland, P. J. Cancer Res.
1996, 56, 2973.
7. (a) Senderowicz, A. M.; Headlee, D.; Stinson, S. F.; Lush,
R. M.; Kalil, N.; Villalba, L.; Hill, K.; Steinberg, S. M.; Figg,
W. D.; Tompkins, A.; Arbuck, S. G.; Sausville, E. A.; J. Clin.
Oncol. 1998, 16, 2986. (b) Wright, J.; Blatner, G. L.; Cheson,
B.D., Oncology 1998, 12, 1018. (c) Wright, J.; Blatner, G. L.;
Cheson, B. D. Oncology, 1998, 12, 1023.
8. Sedlacek, H.; Czech, J.; Naik, R.; Kaur, G.; Worland, P. J.;
Losiewiecz, M. D.; Parker, B.; Carlson, B. A.; Smith, A.;
Senderowicz, A.; Sausville, E. A. Intl. J. Oncol. 1996, 9, 1143.
9. Azevedo, W. F.; Mueller-Dieckmann, H. J.; Schulze-Gah-
men, U.; Worland, P. J.; Sausville, E. A.; Kim, S. H. Proc.
Natl. Acad. Sci. USA 1996, 93, 2735.
10. (a) Kattige, S. L.; Naik, R. G.; Lakdawalla, A. D.;
Dohadwalla, A. N.; Rupp, R. H.; Desouza, N. J. U.S. Patent
4 900 727, 1990. (b) Naik, R.; Lal, B.; Rupp, R. H.; Sedlacek,
H. H.; Dickneite, G.; Czech, J. U.S. Patent 5 284 856, 1988. (c)
Naik, R.; Lal, B.; Rupp, R. H.; Sedlacek, H. H.; Dickneite,
G.; Czech, J. Euro. Patent 0 366 061 1988. (d) Naik, R.; Kat-
tige, S. I.; Bhat, S. V.; Alrejy, B.; DeSouza, N. J.; Rupp, R. H.
Tetrahedron 1988, 44, 2081.
11. Chang, C. J.; Geahlen, R. L. J. Natl. Prod. 1992, 55, 1529.
12. Kuo, S. C.; Lee, H. Z.; Juang, J. P.; Lin, Y. T.; Wu, T. S.;
Chang, J. J.; Lednicer, D.; Paul, K. D.; Lin, C. M.; Hamel, E.;
Lee, K. H. J. Med. Chem. 1993, 36, 1146.
Our SAR studies on ¯avopiridol have shown that both
the presence and the position of the nitrogen moiety on
the D ring are critical requirements for CDK inhibitory
activity. We have also identi®ed a simpler analogue,
ole®n 6, which shows good CDK inhibitory activity.
Our SAR studies on ole®n 6 have shown that the C ring
tolerates substitutions without a major loss in activity.
We also found that the quinolone and the isocoumarin
rings are not eective ¯avone replacements.
13. Vinyl stannane 48 was prepared as shown below.
14. Ohta, S.; Kamata, Y.; Inagaki, T.; Masuda, Y.; Yama-
moto, S.; Yamashita, M.; Kawasaki, I. Chem. Pharm. Bull
1993, 41, 1188.
References and Notes
15. Wick, S. T.; Dubay, M. M.; Imanil, I.; Brizuela, L. Onco-
gene 1995, 11, 2013.
1. Sherr, C. J. Cell 1994, 79, 551. (b) Hunter, T.; Pines, J. Cell
1994, 79, 573. (c) Morgan, D. O. Nature 1995, 374, 131. (d)