Helvetica Chimica Acta – Vol. 96 (2013)
1083
twelve F-atoms of o-CF3 groups should be seen. If R1 ¼ R2 ¼ Ar’’, then two equally
intense signals should be apparent, one from six F-atoms of o-CF3 groups at higher
frequency and one from six F-atoms of p-CF3 groups at lower frequency. In the event of
formation of the mixed species Ar’Ar’’ECl2, there should be two separate signals for
the F-atoms of o-CF3 groups in a 2 :1 intensity ratio, and one signal of intensity 1 for the
F-atoms of the p-CF3 group. As stated above, such a species was not detected in the
present work. More complex mixtures of possible products can be similarly analyzed.
Conclusions. – The variation in 19F-NMR chemical shifts for some Group-14 aryl-
substituted chloro derivatives RnECl4ꢀn (R ¼ 2,4,6-(CF3)3C6H2 (¼Ar), 2,6-(CF3)2C6H3
(¼Ar’), or 2,4-(CF3)2C6H3 (¼Ar’’); E ¼ Si, Ge, or Sn; n ¼ 1 or 2) was studied for the
first time. While the d(F) for p-CF3 groups remained essentially constant, those for the
o-CF3 groups showed interesting variations, which could be correlated with the number
of weak EꢀF interactions found in the solid state, and with the electronegativities of the
Group-14 elements. 19F-NMR spectroscopy was particularly valuable for identifying
the components of mixtures of species in solution. We hope to extend this approach to
other groups of the Periodic Table in the near future.
We thank the Committee of Vice Chancellors and Principals of the Universities of the United
Kingdom (CVCP) for an ORS award, the Graduate Society of Durham University for a graduate-student
award for B. Y. Xue, A. M. Kenwright, C. F. Heffernan, and I. H. McKeag for assistance in recording some
of the NMR spectra, and Y. G. Fan and J. H. Zhao for help drawing figures.
REFERENCES
[1] a) R. D. Schluter, A. H. Cowley, D. A. Atwood, R. A. Jones, M. R. Bond, C. J. Carrans, J. Am.
Chem. Soc. 1993, 115, 2070; b) R. D. Schluter, H. S. Isom, A. H. Cowley, D. A. Atwood, R. A. Jones,
F. Olbrick, S. Corbelin, R. J. Lagow, Organometallics 1994, 13, 4058; c) K. B. Dillon, H. P. Goodwin,
J. Organomet. Chem. 1994, 469, 125; d) M. Belay, F. T. Edelmann, J. Organomet. Chem. 1994, 479,
´
˜
C21; e) C. Bartolome, P. Espinet, J. Villafane, S. Giesa, A. Martin, A. G. Orpen, Organometallics
˜
1996, 15, 2019; f) P. Espinet, S. Martin-Barrios, J. Villafane, P. G. Jones, A. K. Fischer, Organo-
metallics 2000, 19, 290; g) J. Braddock-Wilking, M. Schieser, L. Brammer, J. Huhmann, R. Shaltout,
J. Organomet. Chem. 1995, 499, 89.
[2] V. C. Gibson, C. Redshaw, L. J. Sequeira, K. B. Dillon, W. Clegg, M. R. J. Elsegood, Chem.
Commun. 1996, 2151; K. B. Dillon,V. C. Gibson, J. A. K. Howard, L. J. Sequeira, J. W. Yao,
Polyhedron 1996, 15, 4173; K. B. Dillon, V. C. Gibson, J. A. K. Howard, C. Redshaw, L. J. Sequeira,
J. W. Yao, J. Organomet. Chem. 1997, 528, 179; A. S. Batsanov, K. B. Dillon, V. C. Gibson, J. A. K.
Howard, L. J. Sequeira, J. W. Yao, J. Organomet. Chem. 2001, 631, 181.
[3] N. Burford, C. L. B. Macdonald, D. J. LeBlanc, T. S. Cameron, Organometallics 2000, 19, 152.
[4] H. Grꢃtzmacher, H. Pritzkow, F. T. Edelmann, Organometallics 1991, 10, 23.
[5] S. Brooker, J.-K. Buijink, F. T. Edelmann, Organometallics 1991, 10, 25.
[6] K. H. Whitmire, D. Labahn, H. W. Roesky, M. Noltemeyer, G. M. Sheldrick, J. Organomet. Chem.
1989, 402, 55.
[7] M. Scholtz, H. W. Roesky, D. Stalke, K. Keller, F. T. Edelmann, J. Organomet. Chem. 1989, 366, 73.
[8] J.-K. Buijink, M. Noltemeyer, F. T. Edelmann, J. Fluorine Chem. 1993, 61, 51.
[9] H. P. Goodwin, Ph.D. Thesis, Durham University, Durham, 1990.
[10] A. S. Batsanov, S. M. Cornet, L. A. Crowe, K. B. Dillon, R. K. Harris, P. Hazendonk, M. D. Roden,
Eur. J. Inorg. Chem. 2001, 1729.
[11] L. Heuer, P. G. Jones, R. Schmutzler, J. Fluorine Chem. 1990, 46, 243; H.-J. Kroth, H. Schumann,
H. G. Kuivila, C. D. Schaeffer Jr., J. J. Zuckerman, J. Am. Chem. Soc. 1975, 97, 1754.