10.1002/chem.202101035
Chemistry - A European Journal
[1]
[2]
C. He, J. Cheng, X. Zhang, M. Douthwaite, S. Pattisson, Z. Hao,
Chem Rev 2019, 119, 4471-4568.
a) S. Shereena, F. Muhammad, S. Aamer, G. Sarfaraz Ali, R. E.-S.
Hesham, R. Samina, A. Nadir, L. Fayaz Ali, C. Pervaiz Ali, F.
Tanzeela Abdul, A. Zaman, S. Zulfiqar Ali, Curr. Org. Synth. 2018,
15, 1091-1108; b) A. E. Wendlandt, S. S. Stahl, Angew. Chem. Int.
Ed. 2015, 54, 14638-14658; Angew. Chem. 2015, 127, 14848-
14868; c) D. Shen, C. Miao, D. Xu, C. Xia, W. Sun, Org. Lett.
2015, 17, 54-57.
[3]
[4]
[5]
a) P. Biswas, S. Mandal, J. Guin, Org. Lett. 2020, 22, 4294-4299;
b) S. E. Allen, R. R. Walvoord, R. Padilla-Salinas, M. C. Kozlowski,
Chem. Rev. 2013, 113, 6234-6458; c) S. Derrer, U. Mueller,
Givaudan SA, Switz. . 2008, p. US 7718828.
a) K. Yamaguchi, K. Mori, T. Mizugaki, K. Ebitani, K. Kaneda, J.
Am. Chem. Soc. 2000, 122, 7144-7145; b) S. S. Stahl, Angew.
Chem. Int. Ed. 2004, 43, 3400-3420; Angew. Chem. 2004, 116,
3480-3501.
Scheme 2. Control experiments.
a) P. Pirovano, A. M. Magherusan, C. McGlynn, A. Ure, A. Lynes,
A. R. McDonald, Angew. Chem. Int. Ed. 2014, 53, 5946-5950;
Angew. Chem. 2014, 126, 6056 –6060; b) K. Anandababu, S.
Muthuramalingam, M. Velusamy, R. Mayilmurugan, Catal. Sci.
Technol. 2020, 10, 2540-2548; c) S. K. Alamsetti, G. Sekar, Chem.
Commun. 2010, 46, 7235-7237; d) H. Luo, L. Wang, S. Shang, J.
Niu, S. Gao, Commun. Chem. 2019, 2, 17; e) P. Fries, D. Halter,
A. Kleinschek, J. Hartung, J. Am. Chem. Soc. 2011, 133, 3906-
3912; f) Y. Miller, L. Miao, A. S. Hosseini, S. R. Chemler, J. Am.
Chem. Soc. 2012, 134, 12149-12156; g) E. Watanabe, A. Kaiho,
H. Kusama, N. Iwasawa, J. Am. Chem. Soc. 2013, 135, 11744-
11747; h) C. Zhang, P. Feng, N. Jiao, J. Am. Chem. Soc. 2013,
135, 15257-15262; i) X.-T. Zhou, H.-Y. Chen, Q. Han, M. Lv, H.-B.
Ji, New J. Chem. 2020, 44, 10286-10291; j) J. Liu, J. M. Hoover,
Org. Lett. 2019, 21, 4510-4514; k) X. Zou, A. Goswami, T. Asefa,
J. Am. Chem. Soc. 2013, 135, 17242-17245; l) S. Mahmood, B.-H.
Xu, T.-L. Ren, Z.-B. Zhang, X.-M. Liu, S.-J. Zhang, Molecular
Catalysis 2018, 447, 90-96; m) J. Zhao, B. Cheng, C. Chen, Z. Lu,
Org. Lett. 2020, 22, 837-841; n) S. K. Alamsetti, G. Sekar, Chem.
Commun. 2010, 46, 7235-7237; o) D. P. Hruszkewycz, K. C. Miles,
O. R. Thiel, S. S. Stahl, Chem. Sci. 2017, 8, 1282-1287.
a) H. Baars, M. J. Classen, V. K. Aggarwal, Org. Lett. 2017, 19,
6008-6011; b) K. C. Nicolaou, K. K. Pulukuri, R. Yu, S. Rigol, P.
Heretsch, C. I. Grove, C. R. H. Hale, A. ElMarrouni, Chem. Eur. J.
2016, 22, 8559-8570; c) H. Liu, C. Dong, Z. Zhang, P. Wu, X.
Jiang, Angew. Chem. Int. Ed. 2012, 51, 12570-12574; Angew.
Chem. 2012, 124, 12738 –12742; d) A. Maji, S. Rana, Akanksha,
D. Maiti, Angew. Chem. Int. Ed. 2014, 53, 2428-2432; Angew.
Chem. 2014, 126, 2460-2464; e) C. Tang, N. Jiao, Angew. Chem.
Int. Ed. 2014, 53, 6528-6532; Angew. Chem. 2014, 126, 6646-
6650; f) L. Zhang, X. Bi, X. Guan, X. Li, Q. Liu, B. D. Barry, P.
Liao, Angew. Chem. Int. Ed. 2013, 52, 11303-11307; Angew.
Chem. 2013, 125, 11513 –11517; g) R. J. Tang, Q. He, L. Yang,
Chem. Commun. 2015, 51, 5925-5928; h) Q. Xing, H. Lv, C. Xia,
F. Li, Chem. Commun. 2016, 52, 489-492; i) W. Zhou, Y. Yang, Y.
Liu, G.-J. Deng, Green Chem. 2013, 15, 76-80.
Based on the experimental results and literature reports, a
plausible mechanism was proposed (Scheme 3). Triethylamine
promoted the transformation of aldehyde to enol intermediate A.
.
CoII was oxidized by the oxygen to generate the reactive CoIII-O2
19]
radical intermediate,[5g,
which then reacted with enol
intermediate A to give the 1,2-dioxetane intermediate B,[12, 20]
leading to the ketone product 2 via C−C bond cleavage.
[6]
Scheme 3. Proposed mechanism.
[7]
[8]
a) R. H. Crabtree, Chem. Rev. 1985, 85, 245-269; b) R. H.
Crabtree, Nature 2000, 408, 415-416; c) E. Amadio, R. Di Lorenzo,
C. Zonta, G. Licini, Coord. Chem. Rev. 2015, 301-302, 147-162.
a) P. Biswas, S. Mandal, J. Guin, Org. Lett. 2020, 22, 4294-4299;
b) K. Matcha, A. P. Antonchick, 2013, 52, 2082-2086; c) S.
Mukherjee, T. Patra, F. Glorius, ACS Catal. 2018, 8, 5842-5846; d)
X. Zhang, D. W. C. MacMillan, J. Am. Chem. Soc. 2017, 139,
11353-11356; e) Y. Li, J.-H. Li, Org. Lett. 2018, 20, 5323-5326; f)
L. Yang, W. Lu, W. Zhou, F. Zhang, Green Chem. 2016, 18, 2941-
2945; g) P. Wang, H. Rao, F. Zhou, R. Hua, C.-J. Li, J. Am. Chem.
Soc. 2012, 134, 16468-16471; h) S. Tang, Y. Liu, X. Gao, P.
Wang, P. Huang, A. Lei, J. Am. Chem. Soc. 2018, 140, 6006-
6013; i) R.-J. Tang, Q. He, L. Yang, Chem. Commun. 2015, 51,
5925-5928; j) Q. Shuai, L. Yang, X. Guo, O. Baslé, C.-J. Li, J. Am.
Chem. Soc. 2010, 132, 12212-12213; k) X. Guo, J. Wang, C.-J. Li,
J. Am. Chem. Soc. 2009, 131, 15092-15093; l) S. Liang, T.
Kumon, R. A. Angnes, M. Sanchez, B. Xu, G. B. Hammond, Org.
Lett. 2019, 21, 3848-3854; m) P. Biswas, J. Guin, J. Org. Chem.
2018, 83, 5629-5638.
In summary, we have developed a widely applicable
synthesis of ketones via aerobic oxidative C-C cleavage of
aldehydes. The reactions exhibited high functional group
tolerance and used abundant and inexpensive O2 as the oxidant
and cobalt or copper complexes as the catalysts. In addition, the
direct conversion of β-disubstituted primary alcohols to ketones
has also been achieved. Finally, we have synthesized -
ketoamides via a one-pot tandem process employing CuI as the
catalyst. We believe that this oxidation system can be extended
to more synthetic applications.
[9]
[10]
N. Havare, D. A. Plattner, Org. Lett. 2012, 14, 5078-5081.
S. A. Shipilovskikh, A. E. Rubtsov, A. V. Malkov, Org. Lett. 2017,
19, 6760-6762.
Acknowledgments
[11]
[12]
B. Tiwari, J. Zhang, Y. R. Chi, Angew. Chem. Int. Ed. 2012, 51,
1911-1914; Angew. Chem. 2012, 124, 1947 –1950
H. Sun, C. Yang, F. Gao, Z. Li, W. Xia, Org. Lett. 2013, 15, 624-
We are grateful to the National Science Foundation of China
(NSFC-21871046). G.B.H. is grateful to the National Science
Foundation for financial support (CHE-1855972).
627.
[13]
[14]
S. Paul, J. Guin, Chem. Eur. J. 2015, 21, 17618-17622.
S. Inoki, T. Mukaiyama, Chem. Lett. 1990, 19, 67-70.
Keywords: aerobic oxidation, C-C bond cleavage, cobalt, copper
This article is protected by copyright. All rights reserved.