F. Minutolo et al. / Bioorg. Med. Chem. Lett. 13 (2003) 4405–4408
4407
2. Bos, J. L. Cancer Res. 1989, 49, 4682.
3. Leonard, D. M. J. Med. Chem. 1997, 40, 2971.
4. Whyte, D. B.; Kirschmeier, P.; Hockenberry, T. N.; Nunez-
Oliva, I.; James, L.; Catino, J. J.; Bishop, W. R.; Pai, J.-K. J.
Biol. Chem. 1997, 272, 14459.
5. (a) Some examples are given in: Tucker, T. J.; Abrams,
M. T.; Buser, C. A.; Davide, J. P.; Ellis-Hutchings, M.; Fer-
nandes, C.; Gibbs, J. B.; Graham, S. L.; Hartman, G. D.;
Huber, H. E.; Liu, D.; Lobell, R. B.; Lumma, W. C.; Robin-
son, R. G.; Sisko, J. T.; Smith, A. M. Bioorg. Med. Chem.
Lett. 2002, 12, 2027. (b) Mu, Y. Q.; Eubanks, L. M.; Poulter,
C. D.; Gibbs, R. A. Bioorg. Med. Chem. 2002, 10, 1207. (c)
Marson, C. M.; Rioja, A. S.; Brooke, G.; Coombes, R. C.;
Vigushin, D. M. Bioorg. Med. Chem. Lett. 2002, 12, 255. (d)
Zahn, T. J.; Whitney, J.; Weinbaum, C.; Gibbs, R. A. Bioorg.
Med. Chem. Lett. 2001, 11, 1605. (e) Bergman, J. M.; Abrams,
M. T.; Davide, J. P.; Greenberg, I. B.; Robinson, R. G.; Buser,
C. A.; Huber, H. E.; Koblan, K. S.; Kohl, N. E.; Lobell, R. B.;
Graham, S. L.; Hartman, G. D.; Williams, T. M.; Dinsmore,
C. J. Bioorg. Med. Chem. Lett. 2001, 11, 1411. (f) Gibbs, B. S.;
Zahn, T. J.; Mu, Y. Q.; Sebolt-Leopold, J. S.; Gibbs, R. A. J.
Med. Chem. 1999, 42, 3800. (g) Vasudevan, A.; Qian, Y.;
Vogt, A.; Blaskovich, M. A.; Ohkanda, J.; Sebti, S. M.;
Hamilton, A. D. J. Med. Chem. 1999, 42, 3800. (h) Macchia,
M.; Jannitti, N.; Gervasi, G.; Danesi, R. J. Med. Chem. 1996,
39, 1352.
Scheme 2. Reagents and conditions: (a) potassium phthalimide,
DMF, rt; (b–d) see Scheme 1.
alkyl groups, such as a methyl (1b) or an ethyl (1c), pre-
serves a good inhibitory potency on GGTase when com-
pared with the reference compound 1a, whereas the
activity on FTase is completely lost, thus affording better
selectivity ratios for both 1b and 1c, with respect to 1a.
6. (a) Sun, J.; Blaskovich, M. A.; Knowles, D.; Qian, Y.;
Ohkanada, J.; Bailey, R. D.; Hamilton, A. D.; Sebti, S. M.
Cancer Res. 1999, 59, 4919. (b) Lobell, R. B.; Omer, C. A.;
Abrams, M. T.; Bhimnathwala, H. G.; Brucker, M. J.; Buser,
C. A.; Davide, J. P.; deSolms, S. J.; Dinsmore, C. J.; Ellis-
Hutchings, M. S.; Kral, A. M.; Liu, D.; Lumma, W. C.;
Machotka, S. V.; Rands, E.; Williams, T. M.; Graham, S. L.;
Hartman, G. D.; Oliff, A. I.; Heimbrook, D. C.; Kohl, N. E.
Cancer Res. 2001, 61, 8758. (c) Di Paolo, A.; Danesi, R.;
Caputo, S.; Macchia, M.; Lastella, M.; Boggi, U.; Mosca, F.;
Marchetti, A.; Del Tacca, M. Br. J. Cancer 2001, 84, 1535.
7. (a) Gibbs, R. A. Curr. Opin. Drug Discov. Dev. 2000, 3, 585.
(b) Coxon, F. P.; Helfrich, M. H.; Larijani, B.; Muzylak, M.;
Dunford, J. E.; Marshall, D.; McKinnon, A. D.; Nesbitt, S.
A.; Horton, M. A.; Seabra, M. C.; Ebetino, F. H.; Rogers, M.
J. J. Biol. Chem. 2001, 276, 48213. (c) Coxon, F. P.; Helfrich,
M. H.; Van’t Hof, R.; Sebti, S.; Ralston, S. H.; Hamilton, A.;
Rogers, M. J. J. Bone Miner. Res. 2000, 15, 1467. (d) Cohen,
L. H.; Pieterman, E.; van Leeuwen, R. E. W.; Overhand, M.;
Burm, B. E. A.; van der Marel, G. A.; van Boom, J. H. Bio-
chem. Pharmacol. 2000, 60, 1061.
Removal of one oxygen atom from the polar moiety, as
in the ‘phosphonoacetamido’ series (2a–c), did not cause
any dramatic changes in the biological properties of
these compounds. As a matter of fact, the smaller
homologue 2a shows decreased inhibitory properties on
both enzymes with respect to its oxygenated counter-
part. This decrease is more pronounced on GGTase,
resulting in relatively low selectivity. As seen before,
also in this series the introduction of a methyl group
such as in 2b causes a dramatic decline in the inhibition
of FTase (IC50>10,000 nM) accompanied by a good
inhibition potency on GGTase (IC50=111 nM), pro-
viding 2b with a selectivity ratio higher than 90. In this
series, the introduction of a more hindered ethyl group,
as in 2c, causes significant reduction in the inhibition
ability on GGTase (IC50=566 nM), and preserves
complete inactivity on FTase.
These results show that a slight increase in the steric
hindrance in the diphosphate mimic portion of the
reference compound 1a improves GGTase selectivity. In
fact, the introduction of a methyl (1b) or an ethyl (1c)
substituent led to selectivity ratios of about 70. Among
the ‘phosphonoacetamido’ series, the most active and
selective compound proved to be the methyl-substituted
2b, with a remarkable selectivity ratio of more than 90. To
the best of our knowledge, compounds 1b, 1c and 2b are
among the most active and selective GGTase I inhibitors
possessing a GGPP-like chemical structure, and might
therefore represent a good starting-point in the design of
new selective GGTase inhibitors which may potentially be
developed as drugs in the therapy of cancer and of other
pathologies related to uncontrolled cell proliferation.
1
8. For example, compound 7b: H NMR (CDCl3) d 1.38(m,
9H), 1.59 (s, 9H), 1.67 (s, 3H), 1.70 (s, 3H), 2.02 (m, 12H), 2.56
(m, 1H), 4.04 (q, 2H, J=7.2 Hz), 4.06 (q, 2H, J=7.2 Hz), 4.41
(d, 2H, J=7.2 Hz), 5.09 (br, 3H), 5.41 (t, 1H, J=7.2 Hz); MS
(FAB+) m/e 498(M+H) +
.
9. For example, compound 1b: 1H NMR (CD3OD) d 1.35
(dd, 3H, J=15.2, 7.2 Hz), 1.60 (s, 9H), 1.67 (s, 3H), 1.72 (s,
3H), 2.04 (m, 12H), 2.51 (dq, 1H, J=20.0, 7.2 Hz), 4.40 (d,
2H, J=7.2 Hz), 5.10 (br, 3H), 5.41 (t, 1H, J=7.2 Hz); MS
(FAB+) m/e 518(M+H) +
.
10. For example, compound 11b: 1H NMR (CDCl3) d 1.37
(m, 9H), 1.59 (s, 9H), 1.68(s, 6H), 2.01 (m, 12H), 2.78(m,
1H), 3.85 (d, 2H, J=7.2 Hz), 4.03 (q, 2H, J=7.2 Hz), 4.05 (q,
2H, J=7.2 Hz), 5.12 (br, 3H), 5.23 (t, 1H, J=7.2 Hz); MS
(FAB+) m/e 482 (M+H)+.
11. For example, compound 2b: 1H NMR (CD3OD) d 1.35
(dd, 3H, J=15.2, 7.2 Hz), 1.59 (s, 9H), 1.66 (s, 6H), 2.01 (m,
12H), 2.54 (dq, 1H, J=20.0, 7.2 Hz), 3.79 (d, 2H, J=7.2 Hz),
5.13 (br, 3H), 5.23 (t, 1H, J=7.2 Hz); MS (FAB+) m/e 502
(M+H)+.
References and Notes
1. (a) Downward, J. Nat. Rev. Cancer 2002, 3, 11, and refer-
ences therein. (b) Symons, M. TIBS 1996, 21, 178.
12. (a) Zhang, F. L.; Moomaw, J. F.; Casey, P. J. J. Biol.
Chem. 1994, 269, 23465. (b) Quian, Y.; Blaskovich, M. A.;