Organic Letters
Letter
(12) Ding, F.; William, R.; Leow, M. L.; Chai, H.; Fong, J. Z. M.; Liu,
X.-W. Org. Lett. 2014, 16, 26−29.
̈
Morris Keller − Pharmazeutische Biologie, Universitat Basel,
4056 Basel, Switzerland
(13) Bruckner, S.; Weise, M.; Schobert, R. J. Org. Chem. 2018, 83,
10805−10812.
̈
Olivier Potterat − Pharmazeutische Biologie, Universitat Basel,
(14) (a) Hofferberth, M. L.; Bruckner, R. Angew. Chem., Int. Ed. 2014,
̈
Complete contact information is available at:
53, 7328−7334; Angew. Chem. 2014, 126, 7456−7462. (b) Hofferberth,
M. L.; Bruckner, R. In Strategies and Tactics in Organic Synthesis;
̈
Harmata, M., Ed.; Elsevier/Academic Press: Amsterdam, 2017; pp 37−
93.
Author Contributions
(15) Sorg, A.; Bruckner, R. Angew. Chem., Int. Ed. 2004, 43, 4523−
̈
All synthetic work was performed by C.D. under the guidance of
R.B., and all isolation work by C.D. under the guidance of M.K.,
M.H., and O.P. The manuscript was composed by C.D. and R.B.
4526; Angew. Chem. 2004, 116, 4623−4626.
(16) Lacey, R. N. J. Chem. Soc. 1954, 0, 850−854.
(17) Liu, R.; Sogawa, H.; Shiotsuki, M.; Masuda, T.; Sanda, F. Polymer
2010, 51, 2255−2263.
Notes
(18) Raffier, L.; Piva, O. Beilstein J. Org. Chem. 2011, 7, 151−155.
(19) Riache, N.; Bailly, C.; Deville, A.; Dubost, L.; Nay, B. Eur. J. Org.
Chem. 2010, 2010, 5402−5408.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
(20) The enantiomorphous compound was also synthesized; it is
■
The authors are indebted to the Deutsche Forschungsgemein-
schaft for supporting this work (Project BR 881/10). The
̈
authors are grateful to Tamara Ley (Institut fur Organische
Chemie, Albert-Ludwigs-Universitat) for skilled technical
assistance. The fungal strain was provided by M.H.
(21) Luo, Y.; Roy, I. D.; Madec, A.G. E.; Lam, H. W. Angew. Chem., Int.
Ed. 2014, 53, 4186−4190.
(22) Experimental details adopted from: Ley, S. V.; Smith, S. C.;
Woodward, P. R. Tetrahedron 1992, 48, 1145−1174.
(23) Myers, A. G.; Yang, B. H.; Chen, H.; McKinstry, L.; Kopecky, D.
J.; Gleason, J. L. J. Am. Chem. Soc. 1997, 119, 6496−6511.
(24) Bellotta, F.; D’Auria, M. V.; Sepe, V.; Zampella, A. Tetrahedron
2009, 65, 3659−3663.
̈
DEDICATION
■
§Dedicated to Professor Siegfried Hu
̈
nig (Julius-Maximilians-
Universitat Wurzburg) on the occasion of his 99th birthday.
(25) Mori, K.; Kamada, A.; Kido, M. Liebigs Ann. Chem. 1991, 1991,
775−781.
̈
̈
(26) Akasaka, K.; Tamogami, S.; Beeman, R. W.; Mori, K. Tetrahedron
2011, 67, 201−209.
REFERENCES
■
(1)From Isariafarinosa: Ma, C.; Li, Y.; Niu, S.;Zhang, H.; Liu, X.; Che,
Y. J. Nat. Prod. 2011, 74, 32−37.
̈
(2) From P. militaris: Schmidt, K.; Gunther, W.; Stoyanova, S.;
(27) The mirror image of amide (S,S,R,R)-15 had been synthesized
analogously (ref 23).
(28) Ireland, R. E.; Norbeck, D. W. J. Org. Chem. 1985, 50, 2198−
2200.
Schubert, B.; Li, Z.; Hamburger, M. Org. Lett. 2002, 4, 197−199.
(3) From P. militaris: Schmidt, K.; Riese, U.; Li, Z.; Hamburger, M. J.
Nat. Prod. 2003, 66, 378−383.
(29) Experimental details adopted from: Boeckman, R. K.; Pero, J. E.;
Boehmler, D. J. J. Am. Chem. Soc. 2006, 128, 11032−11033.
(30) Experimental details adopted from: Marshall, J. A.; Bourbeau, M.
P. J. Org. Chem. 2002, 67, 2751−2754.
(31) Experimental details adopted from: Woerly, E. M.; Cherney, A.
H.; Davis, E. K.; Burke, M. D. J. Am. Chem. Soc. 2010, 132, 6941−6943.
(32) N-Protected or N-unprotected tetramic acids form chelates with
Ca2+, Mg2+, or Fe2+ cations, which are common impurities of silica gel
used for standard purifications by flash chromatography; as a
consequence, their 1H NMR spectra suffer from line broadening:
Barnickel, B.; Schobert, R. J. Org. Chem. 2010, 75, 6716−6719.
(33) Experimental details adopted from: Yoshimura, H.; Takahashi,
K.; Ishihara, J.; Hatakeyama, S. Chem. Commun. 2015, 51, 17004−
17007.
(4) Cheng, Y.; Schneider, B.; Riese, U.; Schubert, B.; Li, Z.;
Hamburger, M. J. Nat. Prod. 2006, 69, 436−438.
(5) (−)-Fumosorinone is an N-hydroxy(polyenoyl)pyridone ana-
logueof militarinone D3: Liu, L.;Zhang, J.; Chen, C.; Teng, J.; Wang, C.;
Luo, C. Fungal Genet. Biol. 2015, 81, 191−200.
(6) Reviews: (a) Schobert, R. Naturwissenschaften 2006, 94, 1−11.
(b) Schobert, R.; Schlenk, A. Bioorg. Med. Chem. 2008, 16, 4203−4221.
(c) Jeong, Y.-C.; Moloney, M. G. J. Org. Chem. 2011, 76, 1342−1354.
(d) Jeong, Y.-C.; Anwar, M.; Bikadi, Z.; Hazai, E.; Moloney, M. G.
Chem. Sci. 2013, 4, 1008−1015. (e) Mo, X.; Li, Q.; Ju, J. RSC Adv. 2014,
4, 50566−50593. (f) Yoda, H.; Takahashi, M.; Sengoku, T. In Studies in
Natural Product Chemistry; Atta-Ur-Rahman, Ed.; Elsevier, 2015; Vol.
46, pp 99−131. (g) Bai, W.-J.; Lu, C.; Wang, X. J. Chem. 2016, 2016,
8510278.
(34) Moore, M. C.; Cox, R. J.; Duffin, G. R.; O’Hagan, D. Tetrahedron
1998, 54, 9195−9206.
(7) Review: Jessen, H. J.; Gademann, K. Nat. Prod. Rep. 2010, 27,
(35) Schobert et al. found [α]2D0synthetic (S,R,R)‑1 = −310, which matches
3 = −430.2 slightly less, yet they held these compounds to be
1168−1185.
20
[α]
D natural 1
(8) This configuration was first inferred in ref 13 by comparing the
(correct) specific rotation of totally synthetic 1 to the (somewhat faulty)
specific rotation of natural 1 reported in ref 3.
identical.13
(36) The enantiomorphous compound (S)-19 is commercially
available.
(9) This is because the chemical shifts of the respective 13CH3 groups
differed by 2.2 ppm,3 which is ∼2 times the value expected for an anti-
isomer: (a) Stahl, M.; Schopfer, U.; Frenking, G.; Hoffmann, R. W. J.
Org. Chem. 1996, 61, 8083−8088. (b) Clark, A. J.; Ellard, J. M.
Tetrahedron Lett. 1998, 39, 6033−6036.
(37) The pair of enantiomers of a diastereomer of this compound were
(38) In accordance with the last number, the (S,S)-configured side
chain in a 1:1 mixture of (5S,8′S,10′S)- and (5R,8′S,10′S)-1 led to [α]D20
= −14; similarly, the (R,R)-configured side chain in a 1:1 mixture of
(5S,8′R,10′R)- and (5R,8′R,10′R)-1 caused [α]2D0 = +17 (details in
(10) The same syn-attribution follows from the observation that the
chemical shifts of the protons in the CH2 group between the stereogenic
C−CH3 bonds of militarinone C (1) differ by 0.16 ppm3, which is more
than expected for an anti-isomer: Schmidt, Y.; Breit, B. Org. Lett. 2010,
12, 2218−2221.
(11) (a) Jessen, H. J.; Schumacher, A.; Shaw, T.; Pfaltz, A.; Gademann,
K. Angew. Chem., Int. Ed. 2011, 50, 4222−4226; Angew. Chem. 2011,
123, 4308−4312. More recent syntheses: (b) See ref 12. (c) Dash, U.;
Sengupta, S.; Sim, T. Eur. J. Org. Chem. 2015, 2015, 3963−3970.
Scheme 4).
20
(39) Eventually, this allowed us to redetermine [α]
=
D reisolated natural 1
−310 (Scheme 4). This value matches [α]2D0synthetic (S,R,R)‑1 = −317 better
than [α]2D0synthetic (S,S,S)‑1 = −350 (Scheme 4), which, if true, supports the
finding that natural 1 is 8′R- and 10′R-configured.
E
Org. Lett. XXXX, XXX, XXX−XXX