Paper
Organic & Biomolecular Chemistry
would spontaneously occur to afford [Ni]IIX2 and [Ni]IIAr2
C,14a,23 which would lead to the homocoupling product 3 and
A via reductive elimination. In contrast, in the presence of
excess Mn, B could be preferentially reduced to [Ni]I–Ar D,
which would be more active than B for interception because of
8 K. Kiyokawa, N. Tachikake, M. Yasuda and A. Baba, Angew.
Chem., Int. Ed., 2011, 50, 10393.
9 (a) Y. Takemoto, H. Yoshida and K. Takaki, Chem. – Eur. J.,
2012, 18, 14841; (b) T. Wakamatsu, K. Nagao, H. Ohmiya
and M. Sawamura, Angew. Chem., Int. Ed., 2013, 52, 11620.
the higher nucleophilicity of monovalent Ni.15,16 This would 10 Interception of the carbon–silver bond using other stannyl
afford the stannylated product 2 as well as [Ni]I–OMe E, fol-
lowed by the regeneration of A with Mn.
electrophiles was reported. See: J. Liu, X. Xie and Y. Liu,
Chem. Commun., 2013, 49, 11794.
11 T. Fujihara, K. Nogi, T. Xu, J. Terao and Y. Tsuji, J. Am.
Chem. Soc., 2012, 134, 9106.
Conclusions
12 A possibility that the biaryl 3a was formed through the
Stille coupling of 1a with the generated 2a was completely
ruled out in the reaction of 1a with PhSnBu3 under the
identical conditions. D. A. Powell, T. Maki and G. C. Fu,
J. Am. Chem. Soc., 2005, 127, 510.
13 The reaction of 4-anisyl chloride under the identical con-
ditions (Table 1, entry 2) afforded 2a in 33% yield, along
with 3a in 32%.
14 (a) T. T. Tsou and J. K. Kochi, J. Am. Chem. Soc., 1979, 101,
6319; (b) V. P. Ananikov, ACS Catal., 2015, 5, 1964.
15 J.-X. Hu, H. Wu, C.-Y. Li, W.-J. Sheng, Y.-X. Jia and
J.-R. Gao, Chem. – Eur. J., 2011, 17, 5234.
In conclusion, we have demonstrated a simple and atom-econ-
omical stannylation using stannyl electrophiles catalysed by Ni
complexes in the presence of an Mn reductant. This stannyla-
tion can be tolerated by a diverse set of functional groups on
aryl halides and does not release wasteful stannyl residues.
Preliminary mechanistic studies suggest that aryl Ni(I) species
are intermediates in this transformation. Further mechanistic
studies and synthetic applications of this transmetalation
process of the C–Ni bond are underway.
16 (a) M. Zembayashi, K. Tamao, J.-I. Yoshida and
M. Kumada, Tetrahedron Lett., 1977, 18, 4089; (b) M. Iyoda,
H. Otsuka, K. Sato, N. Nisato and M. Oda, Bull. Chem. Soc.
Jpn., 1990, 63, 80; (c) V. Percec, J.-Y. Bae, M. Zhao and
D. H. Hill, J. Org. Chem., 1995, 60, 176.
Acknowledgements
This work was partially supported by a Grant-Aid for Scientific
Research (KAKENHI) from the Ministry of Education, Culture,
Sports, Science and Technology of Japan. K. K. acknowledges
financial support from the Electronic Technology Research
Foundation of Chugoku. We also acknowledge the Natural
Science Center for Basic Research and Development (N-BARD)
in Hiroshima University for HRMS analysis.
17 W. B. Im, S. H. Choi, J.-Y. Park, S. H. Choi, J. Finn and
S.-H. Yoon, Eur. J. Med. Chem., 2011, 46, 1027.
18 J. J. Hirner and S. A. Blum, Organometallics, 2011, 30, 1299.
19 (a) V. Snieckus, J. C. Cuevas, C. P. Sloan, H. Liu and
D. P. Curran, J. Am. Chem. Soc., 1990, 112, 896;
(b) M. Murakami, M. Hayashi and Y. Ito, J. Org. Chem.,
1992, 57, 793; (c) N. Yoshikai, A. Mieczkowski,
A. Matsumoto, L. Ilies and E. Nakamura, J. Am. Chem. Soc.,
2010, 132, 5568.
Notes and references
1 (a) J. K. Stille, Angew. Chem., Int. Ed. Engl., 1986, 25, 508;
(b) M. Kosugi and K. Fugami, Handbook of Organopalladium 20 (a) H. Yin, C. Zhao, H. You, K. Lin and H. Gong, Chem.
Chemistry for Organic Synthesis, ed. E. Negishi, Wiley,
New York, 2002, p. 263.
2 P. Y. S. Lam, G. Vincent, D. Bonne and C. G. Clark, Tetra-
hedron Lett., 2002, 43, 3091.
3 (a) T. Furuya, A. E. Strom and T. Ritter, J. Am. Chem. Soc.,
2009, 131, 1662; (b) Y. Ye and M. S. Sanford, J. Am. Chem.
Soc., 2013, 135, 4648.
4 C. Huang, T. Liang, S. Harada, E. Lee and T. Ritter, J. Am.
Chem. Soc., 2011, 133, 13308.
Commun., 2012, 48, 7034; (b) D. A. Everson, B. A. Jones and
D. J. Weix, J. Am. Chem. Soc., 2012, 134, 6146; (c) H. Xu,
C. Zhao, Q. Qian, W. Deng and H. Gong, Chem. Sci., 2013, 4,
4022; (d) Y. Peng, X.-B. Xu, J. Xiao and Y.-W. Wang, Chem.
Commun., 2013, 50, 472; (e) Z. Zuo, D. T. Ahneman, L. Chu,
J. A. Terrett, A. G. Doyle and D. W. C. MacMillan, Science,
2014, 345, 437; (f) L. K. G. Ackerman, L. L. Anka-Lufford,
M. Naodovic and D. J. Weix, Chem. Sci., 2014, 6, 1115.
21 (a) B. L. Tran, B. Li, M. Driess and J. F. Hartwig, J. Am.
Chem. Soc., 2014, 136, 2555; (b) S. K. Bose, K. Fucke, L. Liu,
P. G. Steel and T. B. Marder, Angew. Chem., Int. Ed., 2014,
53, 1799.
5 (a) L. Adam Shih-Yuan and D. Wen-Chin, Tetrahedron Lett.,
1996, 37, 495; (b) T. Hayashi and M. Ishigedani, Tetra-
hedron, 2001, 57, 2589; (c) P. Knochel and R. D. Singer,
Chem. Rev., 1993, 93, 2117; (d) C. Gosmini and J. Périchon, 22 Decreasing the solubility of Bu3SnOMe by the addition of
Org. Biomol. Chem., 2005, 3, 216.
9,10-dihydroanthracene would cause low yields. Indeed, as
the amount of the scavenger increases (1.0–3.0 equiv.), the
homocoupling reaction exclusively occurred to form 3a in
16–31% yields. See Table S3 in the ESI.†
6 (a) D. Azarian, S. S. Dua, C. Eaborn and D. R. Walton,
J. Organomet. Chem., 1976, 117, C55; (b) H. Azizian, C. Eaborn
and A. Pidcock, J. Organomet. Chem., 1981, 215, 49.
7 D. Qiu, L. Jin, S. Wang, S. Tang, X. Wang, F. Mo, Y. Zhang 23 A. Nakamura and S. Otsuka, Tetrahedron Lett., 1974, 15,
and J. Wang, Angew. Chem., Int. Ed., 2013, 52, 11581.
463.
Org. Biomol. Chem.
This journal is © The Royal Society of Chemistry 2015