ACS Medicinal Chemistry Letters
Page 6 of 7
P.; Guy, R. K.; Thornton, J. W.; Fletterick, R. J.; Willson, T. M.;
domain; AFS, activation function surface; 6HP, hexahydropenꢀ
talene; PK, PausonꢀKhand.
Ingraham, H. A. Structural Analyses Reveal Phosphatidyl Inositols as
Ligands for the NR5 Orphan Receptors SFꢀ1 and LRHꢀ1. Cell 2005,
120 (3), 343–355.
(17) Sablin, E. P.; Blind, R. D.; Uthayaruban, R.; Chiu, H. J.;
Deacon, M.; Das, D.; Ingraham, H. A.; Fletterick, R. J. Structure of
Liver Receptor Homologꢀ1 (NR5A2) with PIP3 Hormone Bound in
the Ligand Binding Pocket. 2016, 192 (3), 342–348.
(18) Lee, J. M.; Lee, Y. K.; Mamrosh, J. L.; Busby, S. A.;
Patrick, R.; Pathak, M. C.; Ortlund, E. A.; Moore, D. D. Antidiabetic
Actions of a Phosphatidylcholine Ligand for Nuclear Receptor LRHꢀ
1. Nature 2011, 474 (7352), 506–510.
(19) Musille, P. M.; Kossmann, B. R.; Kohn, J. A.; Ivanov, I.;
Ortlund, E. A. Unexpected Allosteric Network Contributes to LRHꢀ1
CoꢀRegulator Selectivity. J. Biol. Chem. 2016, 291 (3), 1411–1426.
(20) MacDonald, J. I.; Sprecher, H. Phospholipid Fatty Acid
Remodeling in Mammalian Cells. Biochim. Biophys. Acta 1991, 1084
(2), 105–121.
1
2
3
4
5
6
7
8
REFERENCES
(1)
Stein, S.; Schoonjans, K. Molecular Basis for the
Regulation of the Nuclear Receptor LRHꢀ1. Curr. Opin. Cell Biol.
2015, 33, 26–34.
(2)
Goodwin, B.; Jones, S. A.; Price, R. R.; Watson, M. A.;
McKee, D. D.; Moore, L. B.; Galardi, C.; Wilson, J. G.; Lewis, M. C.;
Roth, M. E.; Maloney, P. R.; Willson, T. M.; Kliewer, S. A. A
Regulatory Cascade of the Nuclear Receptors FXR, SHPꢀ1, and LRHꢀ
1 Represses Bile Acid Biosynthesis. Mol. Cell 2000, 6 (3), 517–526
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(3)
Lu, T. T.; Makishima, M.; Repa, J. J.; Schoonjans, K.;
Kerr, T. A.; Auwerx, J.; Mangelsdorf, D. J. Molecular Basis for
Feedback Regulation of Bile Acid Synthesis by Nuclear Receptors.
Mol. Cell 2000, 6 (3), 507–515.
(4)
Mataki, C.; Magnier, B. C.; Houten, S. M.; Annicotte, J.ꢀ
S.; Argmann, C.; Thomas, C.; Overmars, H.; Kulik, W.; Metzger, D.;
Auwerx, J.; Schoonjans, K. Compromised Intestinal Lipid Absorption
in Mice with a LiverꢀSpecific Deficiency of Liver Receptor Homolog
1. Mol. Cell. Biol. 2007, 27 (23), 8330–8339.
(21) Ridgway, N. D. The Role of Phosphatidylcholine and
Choline Metabolites to Cell Proliferation and Survival. Crit. Rev.
Biochem. Mol. Biol. 2013, 48 (1), 20–38.
(22) For other synthetic scaffolds that have been reported to
modulate LRHꢀ1, see: (a) de Jesus Cortez, F.; Suzawa M.; Irvy S.;
Bruning J. M.; Sablin E.; Jacobson M. P.; Fletterick, R. J.; Ingraham,
H. A.; England, P. M. DisulfideꢀTrapping Identifies a New, Effective
Chemical Probe for Activating the Nuclear Receptor Human LRHꢀ1
(NR5A2). PLoS ONE 2016, 11(7): e0159316. (b) Lalit, M.; Gangwal,
R.P.; Dhoke, G.V.; Damre, M.V.; Khandelwal, K.; Sangamwar,
A.T. J. Mol. Struct. 2013, 1049, 315–325. (c) Benod, C.; Carlsson, J.;
Uthayaruban, R.; Hwang, P.; Irwin, J.J.; Doak, A.K.; Schoichet, B.K.;
Sablin, E.P., Fletterick, R. J. StructureꢀBased Discovery of
(5)
Lee, Y.ꢀK.; Schmidt, D. R.; Cummins, C. L.; Choi, M.;
Peng, L.; Zhang, Y.; Goodwin, B.; Hammer, R. E.; Mangelsdorf, D.
J.; Kliewer, S. A. Liver Receptor Homologꢀ1 Regulates Bile Acid
Synthesis but is not Essential for Feedback Regulation of Bile Acid
Synthesis. Mol. Endocrinol. 2008, 22 (6), 1345–1356.
(6)
Schoonjans, K.; Annicotte, J. S.; Huby, T.; Botrugno, O.
A.; Fayard, E.; Ueda, Y.; Chapman, J.; Auwerx, J. Liver Receptor
Homolog 1 Controls the Expresion of the Scavenger Receptor Class B
Type I. EMBO Rep. 2002, 3 (12), 1181–1187.
(7)
Stein, S.; Oosterveer, M. H.; Mataki, C.; Xu, P.; Lemos,
Antagonists
of
Nuclear
Receptor
LRHꢀ1.
J.
Biol.
V.; Havinga, R.; Dittner, C.; Ryu, D.; Menzies, K. J.; Wang, X.;
Perino, A.; Houten, S. M.; Melchior, F.; Schoonjans, K.
SUMOylationꢀDependent LRHꢀ1/PROX1 Interaction Promotes
Atherosclerosis by Decreasing Hepatic Reverse Cholesterol
Transport. Cell Metab. 2014, 20 (4), 603–613.
Chem. 2013, 288(27), 19830–19844. (d) Corzo, C.A.; Mari, Y.;
Chang, M.R.; Khan, T.; Kuruvilla, D.; Nuhant, P.; Kuman, N.; West,
G.M.; Duckett, D.R.; Roush, W.R.; and Griffin, P.R. Antiproliferation
Activity of a Small Molecule Repressor of Liver Receptor Homolog
1. Mol. Pharmacol. 2015, 87, 296–304.
(23) Whitby, R. J.; Dixon, S.; Maloney, P. R.; Delerive, P.;
Bryan J. Goodwin; Parks, D. J.; Willson, T. M. Identification of Small
Molecule Agonists of the Orphan Nuclear Receptors Liver Receptor
Homologꢀ1 and Steroidogenic Factorꢀ1. J. Med. Chem. 2006, 49,
6652.
(24) Whitby, R. J.; Stec, J.; Blind, R. D.; Dixon, S.; Leesnitzer,
L. M.; OrbandꢀMiller, L. A.; Williams, S. P.; Willson, T. M.; Xu, R.;
Zuercher, W. J.; Cai, F.; Ingraham, H. A. Small Molecule Agonists of
the Orphan Nuclear Receptors Steroidogenic Factorꢀ1 (SFꢀ1, NR5A1)
and Liver Receptor Homologueꢀ1 (LRHꢀ1, NR5A2). J. Med. Chem.
2011, 54 (7), 2266.
(25) Mays, S. G.; Okafor, C. D.; Whitby, R. J.; Goswami, D.;
Stec, J.; Flynn, A. R.; Dugan, M. C.; Jui, N. T.; Griffin, P. R.;
Ortlund, E. A. Crystal Structures of the Nuclear Receptor, Liver
Receptor Homolog 1, Bound to Synthetic Agonists. J. Biol. Chem.
2016, 291 (49), 25281–25291.
(26) Stec, J.; Thomas, E.; Dixon, S.; Whitby, R.J.; Tandem
Insertion of Halocarbenoids and Lithium Acetylides in Zirconacycles:
A Novel Rearrangement to Zirconium Alkenylidenates by βꢀAddition
to an Alkynyl Zirconecene. Chem. Eur. J. 2011, 17, 4896–4904.
(27) Adrio, J.; Rivero, M. R.; Carretero, J. C. EndoꢀSelective
Intramolecular PausonꢀKhand Reactions of GammaꢀOxygenatedꢀ
Alpha,BetaꢀUnsaturated Phenylsulfones. Chem. Eur. J. 2001, 7 (11),
2435–2448.
(28) Jacobsen, E. N.; Kakiuchi, F.; Konsler, R. G.; Larrow, J.
F.; Tokunaga, M. Enantioselective Catalytic Ring Opening of
Epoxides with Carboxylic Acids. Tetrahedron Lett. 1997, 38 (5),
773–776.
(29) Rye, C. S.; Baell, J. B. Phosphate Isosteres in Medicinal
Chemistry. Curr. Med. Chem. 2005, 12 (26), 3127–3141.
(30) Ballatore, C.; Huryn, D. M.; and Amos B. Smith, III.
Carboxylic Acid (Bio)Isosteres in Drug Design. ChemMedChem.
2013, 8, 385–395.
(8)
Venteclef, N.; Jakobsson, T.; Steffensen, K. R.; Treuter, E.
Metabolic Nuclear Receptor Signaling and the Inflammatory Acute
Phase Response. Trends Endocrinol. Metab. 2011, 22 (8), 333–343.
(9)
Mamrosh, J. L.; Lee, J. M.; Wagner, M.; Stambrook, P. J.;
Whitby, R. J.; Sifers, R. N.; Wu, S.; Tsai, M.; Demayo, F. J.; Moore,
D. D. Nuclear Receptor LRHꢀ1/NR5A2 is Required and Targetable
for Liver Endoplasmic Reticulum Stress Resolution. eLife 2014, 3:
e01694.
(10) Watanabe, M.; Houten, S. M.; Wang, L.; Moschetta, A.;
Mangelsdorf, D. J.; Heyman, R. A.; Moore, D. D.; Auwerx, J. Bile
Acids Lower Triglyceride Levels via a Pathway involving FXR, SHP,
and SREBPꢀ1c. J. Clin. Invest. 2004, 113 (10), 1408–1418.
(11) Cusi, K. Nonalcoholic Fatty Liver Disease in Type 2
Diabetes Mellitus. Curr. Opin. Endocrinol. Diabetes Obes. 2009, 16
(2), 141–149.
(12) Savage, D. B.; Petersen, K. F.; Shulman, G. I. Disordered
Lipid Metabolism and the Pathogenesis of Insulin Resistance.
Physiol. Rev. 2007, 87 (2), 507–520.
(13) Lee, J. M.; Lee, Y. K.; Mamrosh, J. L.; Busby, S. A.;
Griffin, P. R.; Pathak, M. C.; Ortlund, E. A.; Moore, D. D. A Nuclearꢀ
ReceptorꢀDependent Phosphatidylcholine Pathway with Antidiabetic
Effects. Nature 2011, 474 (7352), 506–510.
(14) Musille, P. M.; Pathak, M.; Lauer, J. L.; Hudson, W. H.;
Griffin, P. R.; Ortlund, E. A. Antidiabetic PhospholipidꢀNuclear
Receptor Complex Reveals the Mechanism for PhospholipidꢀDriven
Gene Regulation. Nat. Struct. Mol. Biol. 2012, 19 (5), 532–S2.
(15) Ortlund, E. A.; Lee, Y.; Solomon, I. H.; Hager, J. M.; Safi,
R.; Choi, Y.; Guan, Z.; Tripathy, A.; Raetz, C. R. H.; McDonnell, D.
P.; Moore, D. D.; Redinbo, M. R. Modulation of Human Nuclear
Receptor LRHꢀ1 Activity by Phospholipids and SHP. Nat. Struct.
Mol. Biol. 2005, 12 (4), 357–363.
(16) Krylova, I. N.; Sablin, E. P.; Moore, J.; Xu, R. X.; Waitt,
G. M.; MacKay, J. A.; Juzumiene, D.; Bynum, J. M.; Madauss, K.;
Montana, V.; Lebedeva, L.; Suzawa, M.; Williams, J. D.; Williams, S.
ACS Paragon Plus Environment