Published on Web 04/29/2005
One-Pot Synthesis of Metalated Pyridines from Two
Acetylenes, a Nitrile, and a Titanium(II) Alkoxide
Ryoichi Tanaka,† Akio Yuza,† Yuko Watai,† Daisuke Suzuki,‡ Yuuki Takayama,‡
Fumie Sato,*,‡ and Hirokazu Urabe*,†,‡
Contribution from the Departments of Biological Information and Biomolecular Engineering,
Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology,
4259-B-59 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
Received January 14, 2005; E-mail: hurabe@bio.titech.ac.jp; fsato@bio.titech.ac.jp
Abstract: Four-component coupling process involving two acetylenes, a nitrile, and a divalent titanium
alkoxide reagent, Ti(O-i-Pr)4/2i-PrMgCl, directly yielded titanated pyridines in a highly selective manner.
The reaction can be classified into four categories: (i) a combination of an internal acetylene, a terminal
acetylene, sulfonylnitrile, and the titanium reagent to yield R-titanated pyridines, (ii) a combination of an
internal acetylene, a (sulfonylamino)acetylene, a nitrile, and the titanium reagent to yield alternative
R-titanated pyridines, (iii) a combination of an internal acetylene, a (sulfonylamino)acetylene, a nitrile, and
the titanium reagent to yield titanated aminopyridines, and (iv) a combination of an acetylenic amide, a
terminal acetylene, a nitrile, and the titanium reagent to yield pyridineamides with their side chain titanated.
Some of these reactions enabled virtually completely regioselective coupling of two different, unsymmetrical
acetylenes and a nitrile to form a single pyridine. Synthetic applications of these reactions have been
illustrated in the preparation of optically active pyridines and medicinally useful compounds.
Introduction
Pyridines are a most fundamental heterocyclic compound, and
numerous methods for their preparation have been developed.1
Among these methods, Reppe-type reactions, that is, the cycli-
zation of two molecules of acetylenes and one molecule of nitrile
as formulated in eq 1, attract much attention,2,3 because this
protocol is conceptually straightforward, requires simple starting
materials, and provides synthetic versatility. However, one prob-
lem associated with this transformation is that of regioselectivity.
Completely organized assembly of two different unsymmetrical
acetylenes and one nitrile, giving a single pyridine, is an ideal
goal of this transformation and is essential also from the practical
point of view.3-5 In addition, in consideration of the pivotal
role of organometallic compounds in current organic synthesis,
we conceived that a direct preparation of a pyridylmetal
reagent,1c a new transformation as formulated in eq 2, would
be an attractive alternative of eq 1. In this article, we describe
(3) Wakatsuki, Y.; Yamazaki, H. J. Chem. Soc., Chem. Commun. 1973, 280.
Wakatsuki, Y.; Yamazaki, H. J. Chem. Soc., Dalton Trans. 1978, 1278-
1282. There had been no reports on the selective cyclotrimerization of two
different, unsymmetrical acetylenes and a nitrile before we and others
reported such examples (see refs 4 and 5). For recent reports, which deal
with cyclotrimerization of the same (ref 3a-h), symmetrical (ref 3i), or
tethered (ref 3j-p) substrates, see: (a) Bianchini, C.; Meli, A.; Peruzzini,
M.; Vacca, A.; Vizza, F. Organometallics 1991, 10, 645-651. (b) Smith,
D. P.; Strickler, J. R.; Gray, S. D.; Bruck, W. A.; Holmes, R. S.; Wigley,
D. E. Organometallics 1992, 11, 1275-1288. (c) Viljoen J. S.; du Plessis,
J. A. K. J. Mol. Catal. 1993, 79, 75-84. (d) Diversi, P.; Ermini, L.;
Ingrosso, G.; Lucherini, A. J. Organomet. Chem. 1993, 447, 291-298. (e)
Hill, J. E.; Balaich, G.; Fanwick, P. E.; Rothwell, I. P. Organometallics
1993, 12, 2911-2924. (f) Jerome, K. S.; Parsons, E. J. Organometallics
1993, 12, 2991-2993. (g) Heller, B.; Oehme, G. J. Chem. Soc., Chem.
Commun. 1995, 179-180. (h) Fatland, A. W.; Eaton, B. E. Org. Lett. 2000,
2, 3131-3133. (i) Takahashi, T.; Tsai, F.-Y.; Kotora, M. J. Am. Chem.
Soc. 2000, 122, 4994-4995. (j) Saa´, C.; Crotts, D. D.; Hsu, G.; Vollhardt,
K. P. C. Synlett 1994, 487-489. (k) Takai, K.; Yamada, M.; Utimoto, K.
Chem. Lett. 1995, 851-852. (l) Varela, J. A.; Castedo, L.; Saa´, C. J. Org.
Chem. 1997, 62, 4189-4192. (m) Varela, J. A.; Castedo, L.; Saa´, C. J.
Am. Chem. Soc. 1998, 120, 12147-12148. (n) Varela, J. A.; Castedo, L.;
Saa´, C. Org. Lett. 1999, 1, 2141-2143. (o) Yamamoto, Y.; Okuda, S.;
Itoh, K. Chem. Commun. 2001, 1102-1103. (p) Yamamoto, Y.; Ogawa,
R.; Itoh, K. J. Am. Chem. Soc. 2001, 123, 6189-6190.
† Department of Biological Information.
‡ Department of Biomolecular Engineering.
(1) For reviews, see: (a) ComprehensiVe Heterocyclic Chemistry; Katritzky,
A. R., Rees, C. W., Eds.; Pergamon Press: Oxford, 1984; Vol. 2. (b)
Gilchrist, T. L. J. Chem. Soc., Perkin Trans. 1 2001, 2491-2515. (c)
Mongin, F.; Que´guiner, G. Tetrahedron 2001, 57, 4059-4090. (d) Henry,
G. D. Tetrahedron 2004, 60, 6043-6061. (e) Katritzky, A. R., Ed. Chem.
ReV. 2004, 104, 2127-2812.
(2) For reviews, see: (a) Nakamura, I.; Yamamoto, Y. Chem. ReV. 2004, 104,
2127-2198. (b) Varela, J. A.; Saa´, C. Chem. ReV. 2003, 103, 3787-3802.
(c) Bo¨nnemann, H.; Brijoux, W. In Transition Metals for Organic Synthesis;
Beller, M., Bolm, C., Eds.; Wiley-VCH: Weinheim, 1998; Vol. 1, pp 114-
135. (d) Grotjahn, D. B. In ComprehensiVe Organometallic Chemistry II;
Hegedus, L. S., Abel, E. W., Stone, F. G. A., Wilkinson, G., Eds.; Pergamon
Press: Oxford, 1995; Vol. 12, pp 741-770. (e) Chelucci, G. Tetrahedron:
Asymmetry 1995, 6, 811-826. (f) Schore, N. E. In ComprehensiVe Organic
Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon Press: Oxford, 1991;
Vol. 5, pp 1129-1162. (g) Bo¨nnemann, H. Angew. Chem., Int. Ed. Engl.
1985, 24, 248-262. (h) Vollhardt, K. P. C. Angew. Chem., Int. Ed. Engl.
1984, 23, 539-556.
9
7774
J. AM. CHEM. SOC. 2005, 127, 7774-7780
10.1021/ja050261e CCC: $30.25 © 2005 American Chemical Society