H
H
i–iv
OSiPri3
OBOM
v–vii
OBz
OH
BzO
AcO
OSiPri3
O
O
O
O
O
O
O
OEE
H
H
10
11
12
viii
H
H
H
OSiPri3
OSiPri3
OSiPri3
O
O
O
x–xii
ix
O
O
O
O
O
O
O
OH
H
H
H
O
15
13
14
OH
xiii, xiv
OMe
H
H
H
H
H
xv–xviii
xiv–xxi
O
MPMO
NC
O
O
O
O
I
O
p-MeOC6H4
J
O
O
O
O
O
O
H
H
H
H
H
17
OMe
OBn
OBn
OBn
OH
OBn
16
18
xxii–xxiv
57
H
H
O
H
H
39
56
O
O
xxviii
xxv–xxvii MPMO
37
41
MPMO
O
I
J
H
45
33
O
O
O
H
H
H
H
43
35
OBn
OBn
OBn
OBn
OBn
OBn
HO
19
20
21
BOM = BnOCH2
EE = EtOC2H4
HO
MPM = p-MeOC6H4CH2
2158E/S2
Scheme 2 Reagents and conditions: i, BnOCH2Cl, Pri2EtN, Bu4NI (cat.), (CH2Cl)2, 40 °C, 99%; ii, K2CO3, MeOH, 99%; iii, 2,2-dimethoxypropane, PPTS
(cat.), MeCN, 85%; iv, Pri3SiOSO2CF2, 2,6-lutidine, (CH2Cl)2, 230 °C, quant.; v, H2, Pd(OH)2–C (cat.), AcOEt, 87%; vi, (CF3SO2)2O, Et3N, (CH2Cl)2,
215 °C; vii, HC·CCH2C2H4OEt 22, BuLi, THF–DMPU (6:1), 278 °C, 78% (2 steps); viii, PPTS (cat.), PrOH; ix, Red-Al, Et2O, 0 °C to room temp., 97%
(2 steps); x, (2)-DET, Ti(OPri)4, ButOOH, molecular sieves 4A, CH2Cl2, 220 °C, 97%; xi, SO3·pyridine, Et3N, DMSO, (CH2Cl)2, 0 °C to room temp.; xii,
Ph3PNCHCO2Me, toluene, 94% (2 steps); xiii, Bu4NF, THF; xiv, Pd(PPh3)4 (cat.), PPh3 (cat.), CH2Cl2, 93% (2 steps); xv, DIBAL-H, CH2Cl2, 278 °C, 98%;
xvi, BnBr, NaH, DMF–THF (1:1), 0 °C, 92%; xvii, p-MeC6H4SO3H·H2O (cat.), MeOH; xviii, p-MeOC6H4CH(OMe)2, PPTS (cat.), (CH2Cl)2, quant. (2
steps); xix, DIBAL-H, CH2Cl2, 240 °C, 97%; xx, MeSO2Cl, Et3N, CH2Cl2, 0 °C, quant.; xxi, NaCN, 18-crown-6 (cat.), DMF, 50 °C, 94%; xxii, DIBAL-H,
CH2Cl2, 260 °C; xxiii, Ph3PNCMeCO2Et, toluene, 98% (2 steps); xxiv, DIBAL-H, CH2Cl2, 278 °C, quant.; xxv, (2)-DET, Ti(OPri)4, ButOOH, molecular
sieves 4A, CH2Cl2, 220 °C, 90%; xxvi, SO3·pyridine, Et3N, DMSO, (CH2Cl)2, 0 °C to room temp.; xxvii, Ph3P+CH3Br2, NaN(SiMe3)2, THF, 0 °C, 83%
(2 steps); xxviii, DDQ, CH2Cl2–H2O (20:1), 88%.
10.5, 5.0 Hz, H36), 3.40 (1 H, ddd, J 10.5, 9.5, 3.6 Hz, H37), 3.46 (1 H, ddd,
J 12.2, 4.6, 3.6 Hz, H34), 3.52 (1 H, ddd, J 11.2, 9.2, 4.7 Hz, H42),
3.56–3.58 (1 H, m, H44), 3.86–3.88 (1 H, m, H45). The relative
stereochemistry was unambiguously determined by NOE experiments.
1,4-benzoquinone (DDQ) in CH2Cl2 and water (20:1) resulted
in cleavage of the MPM ether, and spontaneous cyclization of
the resulting hydroxy epoxide prevailed under the weakly acidic
conditions to afford 21 in 88% yield.§ The overall yield of 21
from 10 was 25% in 28 steps. Thus each step effectively
References
proceeded in good yield (!95% yield).
1 M. Murata, A. M. Legrand, Y. Ishibashi and T. Yasumoto, J. Am. Chem.
Soc., 1989, 111, 8929; M. Murata, A. M. Legrand, Y. Ishibashi,
M. Fukui, and T. Yasumoto, J. Am. Chem. Soc., 1990, 112, 4380.
2 E. Alvarez, M.-L. Candenas, R. Pe´rez, J. L. Ravelo and J. D. Mart´ın,
Chem. Rev., 1995, 95, 1953 and references cited therin; H. Oguri,
S. Hishiyama, T. Oishi and M. Hirama, Synlett, 1995, 1252; H. Oguri,
In conclusion, we have demonstrated that the appropriate
combination of stereoselective pyran formation methodologies
allows us to synthesize the central HIJ ring system of 1 starting
with oxocane 10. Further synthetic studies directed towards 1
are in progress in our laboratory. We thank the Uehara
Memorial Foundation, The Naito Foundation, and the Ministry
of Education, Science and Culture, Japan for financial support.
S. Hishiyama, O. Sato, T. Oishi, M. Hirama, M. Murata, T. Yasumoto
and N. Harada, Tetrahedron, 1997, 53, 3057.
3 Oishi, M. Shoji, K. Maeda, N. Kumahara and M. Hirama, Synlett, 1996,
1165.
4 M. Inoue, M. Sasaki and K. Tachibana, Tetrahedron Lett., 1997, 38,
1611.
5 T. Suzuki, O. Sato and M. Hirama, Tetrahedron Lett., 1990, 31,
4747.
6 K. C. Nicolaou, C. V. C. Prasad, P. K. Somers and C.-K. Hwang, J. Am.
Chem. Soc., 1989, 111, 5330.
7 H. Kotsuki, I. Kadota and M. Ochi, Tetrahedron Lett., 1990, 31,
4609.
8 H. A. Tius and A. H. Faug, J. Am. Chem. Soc., 1986, 108, 1035.
9 S. E. Denmark and T. K. Jones, J. Org. Chem., 1982, 47, 4595.
10 Y. Mori, K. Yaegashi and H. Furukawa, J. Am. Chem. Soc., 1996, 118,
8158.
Footnotes
* E-mail: hirama@ykbsc.chem.tohoku.ac.jp
† Epoxides 2, 5 and 7 were prepared from (2S,3R)-2-ethenyl-3-hydroxy-
tetrahydropyran (ref. 6).
‡ On the other hand, acid-catalysed cyclization (ref. 6) of the 15 gave the
5-exo cyclization product (tetrahydrofuran) exclusively.
§ Representative data for 21: [a]2D522.14 (c 0.35, CHCl3); H NMR (600
1
MHz, CDCl3): d 1.04 (3 H, d, J 7.2 Hz, H57), 1.26 (3 H, s, H56), 1.51 (1
H, ddd, J 13.5, 11.2, 2.7 Hz, H43ax), 1.52 (1 H, ddd, J 14.3, 9.5, 6.2 Hz,
H38ax), 1.59 (1 H, d, J 3.6 Hz, OH), 1.63 (1 H, td, J 12.2, 11.0 Hz, H35ax),
1.74 (1 H, ddd, J 14.4, 10.6, 8.0 Hz, H40ax), 1.84 (1 H, br dd, J 14.3, 3.6
Hz, H38eq), 1.84–1.89 (1 H, m, H39), 1.88 (1 H, br d, J 14.4 Hz, H40eq),
2.12 (1 H, ddd, J 12.2, 5.0, 4.6 Hz, H35eq), 2.28 (1 H, ddd, J 13.5, 4.7, 3.1
Hz, H43eq), 3.20 (1 H, ddd, J 10.6, 9.2, 3.1 Hz, H41), 3.23 (1 H, ddd, J 11.0,
Received in Cambridge, UK, 1st April 1997; Com. 7/02158E
1290
Chem. Commun., 1997