10.1002/adsc.201901254
Advanced Synthesis & Catalysis
[6]
[7]
L. W Xu, C. G Xia, European J. Org. Chem. 2005,
4, 633–639.
287–292; c) Z. Konsula, M. Liakopoulou-
Kyriakides, Process Biochem. 2004, 39, 1745–1749.
a) A. T Khan, T. Parvin, S. Gazi, L. H Choudhury,
Tetrahedron Lett. 2007, 48, 3805–3808; b) K.
Surendra, N. S Krishnaveni, R. Sridhar, K. R Rao,
Tetrahedron Lett. 2006, 47, 2125–2127; c) M. K
Chaudhuri, S. Hussain, M. L Kantam, B. Neelima,
Tetrahedron Lett. 2005, 46, 8329–8331.
a) Z.-X., Li, D. Luo, M.-M. Li, X.-F. Xing, Z.-Z.
Ma, H. Xu, Catalysts 2017, 7, 219; b) A. G Ying,
L. Liu, G. F Wu, G. Chen, X. Z Chen, W. D Ye,
Tetrahedron Lett. 2009, 50, 1653–1657; c) T. Selvi,
S. Velmathi, J. Org. Chem. 2018, 83 , 4087–4091.
a) S. Kim, S. Kang, G. Kim, Y. Lee, Journal of
Organic Chemistry. 2016, 81 4048–4057; b) S.
Kang, S. Park, K. S Kim, C. Song, Y. Lee, Journal
of Organic Chemistry. 2018, 83, 2694–2705.
[15]
a) L. H. Zhou, N. Wang, W. Zhang, Z. B. Xie, X. Q.
Yu, J. Mol. Catal. B Enzym. 2013, 91, 37–43; b) H.
Zheng, Q. Y. Shi, K. Du, Y. J. Mei, P. F. Zhang,
Catal. Letters 2013, 143, 118–121; c) Y. R. Liang,
Y. J. Hu, X. H. Zhou, Q. Wu, X. F. Lin, Tetrahedron
Lett. 2017, 58, 2923–2926; d) K. S. Dalal, S. A.
Padvi, Y. B. Wagh, D. S. Dalal, B. L. Chaudhari,
ChemistrySelect 2018, 3, 10378–10382; e) H.
Zheng, Q. Shi, K. Du, Y. Mei, P. Zhang, Mol.
Divers. 2013, 17, 245–250; f) X. D. Zhang, J. Song,
N. Gao, Z. Guan, Y. H. He, J. Mol. Catal. B Enzym.
2016, 134, 1–8.
[8]
[9]
[16]
[17]
[18]
X. D. Zhang, J. Song, N. Gao, Z. Guan, Y. H. He,
J. Mol. Catal. B Enzym. 2016, 134, 1–8.
W. X. He, X. Xing, Z. J. Yang, Y. Yu, N. Wang,
X. Q. Yu, Catal. Letters 2019, 149, 638–643.
[10] a) M. S. Humble, P. Berglund, European J. Org.
Chem. 2011, 3391–3401; b) Z. Guan, L. Y. Li, Y. H.
He, RSC Adv. 2015, 5, 16801–16814; c) Q. Wu, B.
Liu, X. Lin, 2010, 1966–1988; d) M. Kapoor, M. N.
Gupta, Process Biochem. 2012, 47, 555–569; e) E.
Busto, V. Gotor-Fernández, V. Gotor, Chem. Soc.
Rev. 2010, 39, 4504–4523; f) M. Lõpez-Iglesias, V.
Gotor-Fernández, Chem. Rec. 2015, 15, 743–759.
a) R. P. Dhavale, S. B. Parit, S. C. Sahoo, P. Kollu,
P. S. Patil, P. B. Patil, A. D. Chougale, Mater. Res.
Express 2018, 5, DOI 10.1088/2053-1591/aacef1;
b) Z. Li, Y. Ding, X. Wu, J. Ge, P. Ouyang, Z. Liu,
RSC Adv. 2016, 6, 20772–20776; c) K. C Badgujar,
T. Sasaki, B. M Bhanage, RSC Adv. 2015, 5, 55238–
55251; d) M. Filice, M. Marciello, M. D. P Morales,
J. M Porales, Chem. Commun. 2013, 49, 6876–6878.
[11]
a) S. P. Yao, D. S. Lu, Q. Wu, Y. Cai, S. H. Xu, X.
F. Lin, Chem. Commun. 2004, 10, 2006–2007; b) Y.
Cai, Q. Wu, Y. M. Xiao, D. S. Lv, X. F. Lin, J.
Biotechnol. 2006, 121, 330–337; c) Y. Cai, S. P.
Yao, Q. Wu, X. F. Lin, Biotechnol. Lett. 2004, 26,
525–528; d) H. X. Dai, S. P. Yao, J. Wang,
Biotechnol. Lett. 2006, 28, 1503–1507; e) Y. J. K.
Araújo, A. L. M. Porto, Biocatalysis 2015, 1, 49–
58; f) A. Luna, I. Alfonso, V. Gotor, Org. Lett. 2002,
4, 3627–3629; g) M. Svedendahl, B. Jovanović, L.
Fransson, P. Berglund, ChemCatChem 2009, 1,
252–258; h) J. Ryan, M. Šiaučiulis, A. Gomm, B.
Maciá, E. O’Reilly, V. Caprio, J. Am. Chem. Soc.
2016, 138, 15798–15800.
[19]
[20]
T. Görbe, K. P. J Gustafson, O, Verho, G.
Kervefors, H. Zheng, X. Zou, E. V Johnston, J. E
Bäckvall, ACS Catal. 2017, 7, 1601–1605.
a) D. Choudhury, P.L Xavier, K. Chaudhari, R.
John, A. K Dasgupta, T. Pradeep, G. Chakrabarti,
Nanoscale 2013, 5 , 4476–4489; b) P. Kaur, A. K
Sharma, D. Nag, A. Das, S. Datta, A. Ganguli, V.
Goel, S. Rajput,
G. Chakrabarti, B. Basu,
Nanomedicine Nanotechnology, Biol. Med. 2019,
15 , 47–5
[21]
a) D. Enders, C. Wang, M. Mukanova, A. Greb,
Chem. Commun. 2010, 46, 2447–2449; b) C.
Bhanja, S. Jena, S. Nayak, S. Mohapatra, Beilstein
J. Org. Chem. 2012, 8, 1668–1694; c) X. D. Zhang,
N. Gao, Z. Guan, Y. H. He, Chinese Chem. Lett.
2016, 27, 964–968; d) H. Sundén, R. Rios, I.
Ibrahem, G. L. Zhao, L. Eriksson, A. Córdova, Adv.
Synth. Catal. 2007, 349, 827–832.
[12]
a) O. Torre, I. Alfonso, V. Gotor, Chem. Commun.
2004, 435, 1724–1725; b) L. N Monsalve, F.
Gillanders, A. Baldessari, European Journal of
Organic Chemistry. 2012, 6 1164–1170; c) M. A
Ortega-Rojas, J. D Rivera-Ramírez, C. G Ávila-
Ortiz, E. Juaristi, F. oz GonzÁlez-Mu, E. Castillo, J.
Escalante, Molecules 2017, 22, 2189; d) P.
Steunenberg, M. Sijm, H Zuilhof, J. P. M Sanders,
E. L Scott, M. C.R Franssen, J. Org. Chem. 2013,
78, 3802–3813; e) Y. Araujo, A. Porto, Curr.
Microw. Chem. 2014, 1, 87–93.
[22]
a) H. J Swift, L. Brady, Z. S Derewenda, E. J
Dodson, G. G Dodson, J. P Turkenburg, A. J
Wilkinson, Acta Crystallogr Sect B: Struct
Sci. 1991, 47, 535-544; b) Y. A Matsuura, Biologia
2002, 11, 21-27 c) T. Suárez-Dieguez, M. Soriano-
García, I. Anaya-Sosa, V. Y Cruz, Carbohydrate
Polymers 2009, 75, 538-540; d) M. R. et. Al
Housaindokht, Journal of Molecular Catalysis B:
Enzymatic 2013, 95, 36-40; e) M. Sahnoun, S. Jemli,
S. Trabelsi, L. Ayadi, S. Bejar, PLoS ONE 2016, 11,
[13]
[14]
J. Zhang, C. Wang, C. Wang, W. Shang, B. Xiao, S.
Duan, F. Li, L. Wang, P. Chen, J. Chem. Technol.
Biotechnol. 2019, DOI 10.1002/jctb.6203.
a) P. J. Butterworth, F. J. Warren, P. R. Ellis,
Starch/Staerke 2011, 63, 395–405; b) G. Salieri, G.
Vinci, M. L. Antonelli, Anal. Chim. Acta 1995, 300,
9
This article is protected by copyright. All rights reserved.