ORGANIC
LETTERS
2000
Vol. 2, No. 17
2713-2715
A Convenient Preparation of Glycosyl
Chlorides from Aryl/Alkyl Thioglycosides
Shin Sugiyama and James M. Diakur*
Faculty of Pharmacy & Pharmaceutical Sciences, UniVersity of Alberta,
Edmonton, Alberta, Canada T6G 2N8
Received July 7, 2000
ABSTRACT
Because of the vast structural diversity encountered in the field of glycobiology, versatile methods for orthogonal oligosaccharide assembly
are always of interest. Reported herein is the preparation of glycosyl chloride donors obtained by reaction of the corresponding thioglycoside
precursors with chlorosulfonium chloride reagent 4. The crude chlorides thus obtained can be used directly in subsequent glycosylation
reactions, and examples of the generality of this approach are provided.
Thioglycosides are now well established as stable and
versatile synthons in the field of synthetic carbohydrate
chemistry.1-4 During the course of our work on oligosac-
charide assembly,5 we required a mild, versatile protocol for
the conversion of thioglycosides protected with sensitive
blocking groups into their corresponding glycosyl chlorides.
Halogen activation6,7 of thioglycosides is well-known, and
the reaction proceeds under essentially neutral conditions.
The mechanism of conversion involves the initial formation
of glycosyl halosulfonium salt 2 from thioglycoside 1, which
subsequently heterolyzes to glycosyl halide 3 (Scheme 1).
Scheme 1
(1) Garegg, P. J. AdV. Carbohydr. Chem. Biochem. 1997, 52, 179-205.
(2) Fugedi, P.; Garegg, P. J.; Lonn, H.; Noberg, T. Glycoconjugate J.
1987, 4, 97-108.
(3) Toshima, K.; Tatsuta, K. Chem. ReV. 1993, 93, 1503-1531.
(4) Norberg, T. In Modern Methods in Carbohydrate Synthesis; Khan,
S. H., O’Neill, R. A., Eds.; Harwood Academic Publishers: 1995; Chapter
4.
(5) Sugiyama, S.; Diakur, J. M. Manuscript in preparation.
(6) Bromine activation; (a) Bonner, W. J. Am. Chem. Soc. 1948, 70,
3491-3497. (b) Weygand, F.; Ziemann, H.; Bestmannn, H. J. Chem. Ber.
1958, 91, 2534-2537. (c) Weygand, F.; Ziemann, H. Justus Liebigs Ann.
Chem. 1962, 657, 179-198.
(7) Chlorine activation; (a) Wolfrom, M. L.; Groebke, W. J. Org. Chem.
1963, 28, 2986-2988. (b) Wolfrom, M. L.; Garg, H. G.; Horton, D. J.
Org. Chem. 1963, 28, 2989-2991. (c) Horton, D.; Wolfrom, M. L.; Garg,
H. G. J. Org. Chem. 1963, 28, 2992-2995.
(8) Kartha, K. P. R.; Field, R. A. Tetrahedron Lett. 1997, 38, 8233-
8236.
Recently, this approach has been extended to include reaction
with mixed halogens (I-Br, I-Cl).8 The utility of this classic
halogen activation has been demonstrated in the assembly
of higher oligosaccharides.9 However, there is some concern
that bromine can react with aromatic aryl protecting groups,10
while the handling of chlorine gas is cumbersome. Here, we
report a convenient method for the preparation of glycosyl
chlorides from their precursor thioglycosides via chlorosul-
fonium salts generated in situ.
We envisaged that a preformed sulfonium salt such as 4
could effectively participate in the transfer of chlorine to
thioglycoside 1 to generate 2. Reagent 4 is readily prepared
by treatment of an alkyl or aryl sulfoxide with oxalyl chloride
(9) (a) Koto, S.; Uchida, T.; Zen, S. Bull. Chem. Soc. 1973, 46, 2520-
2523. (b) Leontein, K.; Nilsson, M.; Norberg, T. Carbohydr. Res. 1985,
144, 231-240. (c) Norberg, T.; Ritzen, H. Glycocoonjugate J. 1986, 3,
135-142. (d) Garegg, P. J.; Haraldsson, M.; Lonn, H.; Norberg, T.
Glycoconjugate J. 1987, 4, 231-238. (e) Norberg, T.; Walding, M.;
Westman, E. J. Carbohydr. Chem. 1988, 7, 283-292. (f) Kovac, P.; Lerner,
L. Carbohydr. Res. 1988, 184, 87-112.
(11) (a) Mancuso, A. J.; Swern, D. Synthesis 1981, 165-185. (b) Omura,
K.; Swern, D. Tetrahedron 1978, 34, 1651-1660. (c) Mancuso, A. J.;
Huang, S. L.; Swern, D. J. Org. Chem. 1978, 43, 2480-2482.
(10) Kihlberg, J. O.; Leigh, D. A.; Bundle, D. R. J. Org. Chem. 1990,
55, 2860-2863.
10.1021/ol0063050 CCC: $19.00 © 2000 American Chemical Society
Published on Web 08/03/2000