Communications to the Editor
J ournal of Medicinal Chemistry, 1996, Vol. 39, No. 23 4529
Further biological and pharmacological evaluation of
these compounds and additional details of structural
requirements for their unusual selectivity will be de-
scribed in a future paper.
Ack n ow led gm en t. We thank Terence K. Brunck,
Ph.D., and Marguerita Lim-Wilby, Ph.D., for useful
discussions. Many thanks to Suzanne M. Anderson,
Peter W. Bergum, and George P. Vlasuk, Ph.D., for all
pharmacological studies and Thomas G. Nolan, Ph.D.,
Steven A. Dixon, Malissa M. Lods, Michael G. Ma, and
Huan S. Tran for all analytical support.
Refer en ces
(1) (a) Colman, R. W.; Marder, V. J .; Salzman, E. W.; Hirsch, J .
Overview of hemostatis. In Hemostasis and Thrombosis: Basic
Principles and Clinical Practice, 3rd ed.; Colman, R. W., Hirsch,
J ., Marder, V. J ., Salzman, E. W., Eds.; J . B. Lippincott:
Philadelphia, 1994; pp 3-18. (b) Mann, K. G. Prothrombin and
Thrombin. Ibid. pp 184-199. (c) Colman, R. W.; Cook, J . J .;
Niewiarowski, S. Mechanisms of Platelet Aggregation. Ibid. pp
508-523. (d) Edit, J . F.; Allison, P.; Noble, S.; Ashton, J .; Golino,
P.; McNard, J .; Buja, L. M.; Willerson, J . T. Thrombin is an
important mediator of platelet aggregation in stenosed canine
coronary arteries with endothelial injury. J . Clin. Invest. 1989,
84, 18.
(2) (a) Tapparelli, C.; Metternich, R.; Ehrhardt, C.; Cook, N. S.
Synthetic low-molecular weight thrombin inhibitors: Molecular
design and pharmacological profile. Trends Pharm. Sci. 1993,
14, 366-376. (b) Hirsh, J .; Fuster, V. Guide to anticoagulant
therapy, part I: heparin. Circulation 1994, 89, 1449-1468. (c)
Hirsch, J . Oral anticoagulants. N. Engl. J . Med. 1991, 324,
1865-1875. Hirsch, J . Low molecular weight heparin. Thromb.
Haemost. 1993, 70, 204-207.
(3) (a) Lefkovits, J .; Topol, E. J . Direct thrombin inhibitors in
cardiovascular medicine. Circulation 1994, 90, 1523-1536. (b)
Stone, S. R.; Maraganore, J . M. Hirudin interactions with
thrombin. In Thrombin: Structure and Function; Berliner, L.
J ., Ed.; Plenum Press: New York, 1992; pp 21-256. (c) Topol,
E. J .; Bonan, R.; J ewitt, D.; Sigwart, U.; Kakkar, V. V.; Rothman,
M.; de Bono, D.; Fegurson, J .; Willerson, J . T.; Strony, J .; Ganz,
P.; Cohen, M. D.; Raymond, R.; Fox, I.; Maranganore, J .;
Adelman, B. Use of a direct antithrombin, hirulog, in place of
heparin during coronary angioplasty. Circulation 1993, 87,
1622-1629. (d) Harker, L. A.; Hanson, S. R.; Kelly, A. B.
Antithrombotic benefits and hemorrhagic risks of direct throm-
bin antagonists. Thromb. Haemost. 1995, 74, 464-472.
(4) (a) Vlasuk, G. P.; Webb, T. R.; Pearson, D. A. Inhibitors of
thrombosis. PCT Patent Application WO 93/15756, 1993. (b)
Richard, B. M.; Nolan, T. G.; Tran, H. S.; Miller, M. M.; Nutt,
R. F.; Vlasuk, G. P. Bioavailability of a novel direct thrombin
inhibitor in non-human primates following oral administration.
Circulation 1994, 90, I-180. (c) Rote, W. E.; Dempsey, E. M.;
Oldeschulte, G.; Ardecky, R. J .; Tamura, S. Y.; Nutt, R. F.;
Bergum, P. W.; Tran, H. S.; Anderson, S. M.; Vlasuk, G. P.
Evaluation of a novel orally active direct inhibitor of thrombin
in animal models of thrombosis. Circulation 1994, 90, I-344. (d)
Cousins, G. R.; Friedrichs, G. S.; Sudo, Y.; Rote, W. E.; Vlasuk,
G. P.; Nolan, T. G.; Mendoza, C.; Lucchesi, B. R. Orally effective
CVS-1123 prevents coronary artery thrombosis in the conscious
canine. Circulation 1995, 92, I-303. (e) Vlasuk, G.; Webb, T.;
Pearson, D.; Abelman, M. Inhibitors of thrombosis. U.S. Patent
5492895, 1996. (f) Tamura, S. Y.; Semple, J . E.; Ardecky, R. J .;
Leon, P.; Carpenter, S. H.; Ge, Y.; Shamblin, B. M.; Weinhouse,
M. I.; Ripka, W. C.; Nutt, R. F. Novel and general method for
the preparation of peptidyl argininals. Tetrahedron Lett. 1996,
37, 4109-4112.
(5) (a) Semple, J . E.; Ardecky, B.; Nutt, R. F.; Ripka, W. C.; Rowley,
D. C.; Lim-Wilby, R.; Brunck, T. K. 3-Amino-2-oxo-1-pipe-
ridineacetic acid derivatives as enzyme inhibitors. PCT patent
application, WO 95/35311, 1995. (b) Semple J . E.; Rowley, D.
C.; Brunck, T. K.; Tamura, S. Y.; Ardecky, R. J .; Carpenter, S.
H.; Ge, Y.; Goldman, E.; Minami, N. K.; Owens, T. D.; Siev, D.
V.; Uong, T. H.; Tulinsky, A.; Nutt, R. F.; Ripka, W. C. Design,
Synthesis and evolution of a novel, selective, and orally bio-
available class of thrombin inhibitors: P1-argininal derivatives
incorporating P3-P4 lactam sulfonamide moieties. J . Med. Chem.,
in press.
(6) Substrate and inhibitor nomenclature based on the following:
Schechter, I.; Berger, A. On the size of the active site in
proteases. I. Papain. Biochem. Biophys. Res. Commun. 1967, 27,
157-162.
(7) (a) Freidinger, R. M.; Perlow, D. S.; Veber, D. F. Protected
lactam-bridged dipeptides for use as conformational constraints
in peptides. J . Org. Chem. 1982, 47, 104-109. (b) Bock, M. G.;
Evans, B. E.; Freidinger, R. M.; Gilbert, K.; Hobbs, D. W.;
F igu r e 2. Superimposed structures of inhibitors 5a ,b bound
in the thrombin active site.
following oral administration in conscious dogs to a level
of approximately 15%.15
The preliminary crystal structures of human R-throm-
bin complexed with 5a and 5b have been determined,
and the absolute configuration of each isomer at
P1-Cγ has been assigned.16 Thus, 5a and 5b have the
(R)- and the (S)-configuration at Cγ, respectively. X-ray
crystallographic analysis further revealed that both
inhibitors bind to thrombin in a substrate-like man-
ner, as expected, with the L-3-piperidyl(N-guanidino)-
alaninal occupying the S1 site and the carbonyl and
amine NH of the P3 residue hydrogen bonding with the
thrombin Gly 216 N,O atoms. Both structures were
conformationally very similar at the catalytic site and
at the S2 and S3 subsites (see Figure 2). The positioning
of the 5a and 5b lactam rings in the enzyme site was
also very similar to the structure of the lactam in the
argininal analog 2.5b The trypsin/thrombin selectivity
imparted by the L-3-piperidyl(N-guanidino)alaninal resi-
due does not appear to be due to a differences in
hydrophobicity between the S1 sites of trypsin and
thrombin since the hydrophobic -(CH2)3- loop of the
rigid arginine mimic is oriented out of the S1 site into
the solvent.
In summary, we have discovered novel, highly potent
and selective transition-state thrombin inhibitors which
incorporate the constrained arginine mimic, L-3-pip-
eridyl(N-guanidino)alaninal, at P1. While the inhibitory
potencies of these compounds were comparable to the
potencies achieved by their arginine-containing coun-
terparts, selectivity for thrombin over other serine
proteases such as trypsin and FXa was greatly in-
creased. Compound 5b with a trypsin/thrombin potency
ratio of 5 orders of magnitude is the most selective
transition-state thrombin inhibitor reported to date.