M. Ordo´n˜ez et al. / Tetrahedron: Asymmetry 13 (2002) 559–562
561
References
1. Aminophosphonic and Aminophosphinic Acids: Chemistry
and Biological Activity; Kukhar, V. P.; Hudson, H. R.,
Eds.; John Wiley: New York, 2000 and references cited
therein.
2. (a) Nieschalk, J.; Batsanov, A. S.; O’Hagan, D.; Howard,
J. A. K. Tetrahedron 1996, 52, 165; (b) Burke, T. R., Jr.;
Smyth, M. S.; Nomizu, M.; Otaka, A.; Roller, P. P. J.
Org. Chem. 1993, 58, 1336.
Scheme 1.
3. (a) Yamagishi, T.; Suemune, K.; Yokomatsu, T.;
Shibuya, S. Tetrahedron Lett. 2001, 42, 5033; (b) Ham-
merschmidt, F.; Lindner, W.; Wuggenig, F.; Zarbl, E.
Tetrahedron: Asymmetry 2000, 11, 2955; (c) Barco, A.;
Benetti, S.; Bergamini, P.; De Risi, C.; Marchetti, P.;
Pollini, G. P.; Zanirato, V. Tetrahedron Lett. 1999, 40,
7705; (d) Thomas, A. A.; Sharpless, K. B. J. Org. Chem.
1999, 64, 8379; (e) Wro´blewski, A. E.; Piotrowska, D. G.
Tetrahedron 1998, 54, 8123; (f) Gravotto, G.; Gioven-
zana, G. B.; Pagliarin, R.; Palmisano, G.; Sisti, M.
Tetrahedron: Asymmetry 1998, 9, 745.
4. (a) O’Brien, P.; Powell, H. R.; Raithby, P. R.; Warren, S.
J. Chem. Soc., Perkin Trans. 1 1997, 1031; (b) O’Brien,
P.; Warren, S. Tetrahedron Lett. 1996, 37, 4271; (c)
Froestl, W.; Mickel, S. J.; Hall, R. G.; Sprecher, G. V.;
Strub, D.; Baumann, P. A.; Brugger, F.; Gentsch, C.;
Jaekel, J.; Olpe, H.-R.; Rihhs, G.; Vassout, A.; Vald-
meier, P. C.; Bittiger, H. J. Med. Chem. 1995, 38, 3297;
(d) Dellaria, J. F., Jr.; Maki, R. G.; Stein, H. H.; Cohen,
J.; Whittern, D.; Marsh, K.; Hoffman, D. J.; Plattner, J.
J.; Perum, T. J. J. Med. Chem. 1990, 33, 534; (e)
Chakravarty, P. K.; Greenlee, W. J.; Parsons, W. H.;
Patchett, A. A.; Combs, P.; Roth, A.; Busch, R. D.;
Mellin, T. N. J. Med. Chem. 1986, 32, 1886.
was the reducing agent used for the other b-ketophospho-
nates 4a–d.10
From the results summarized in Table 1, it should be
pointed out that the diastereoselectivity of the reduction
of g-N,N-dibenzylamino-b-ketophosphonates 4a–d is
independent of the steric demands placed upon increasing
size of the R group at C(3). The diastereomeric excesses
for syn-5 and anti-5 were determined by 1H NMR at 400
MHz. The configuration at the carbinol center was
assigned by analogy of other phosphonates reported in
the literature3d and confirmed by the X-ray crystal
structures of diastereomeric pure 5c and 5d (Fig. 1).13
In summary, ready access to g-N,N-dibenzylamino-b-
ketophosphonates 4 in conjunction with the reduction of
a ketone group using catecholborane with very high
diastereoselectivity and good chemical yield as described
in this paper make this experimental operation a good,
simple and general method to obtain enantiomerically
pure g-N,N-dibenzylamino-b-hydroxy-phosphonates 5.
5. Chung, S.-K.; Kang, D.-H. Tetrahedron: Asymmetry
1997, 8, 3027.
Acknowledgements
6. (a) Hungerhoff, B.; Samanta, S. S.; Roels, J.; Metz, P.
Synlett 2000, 77; (b) Lagu, B. R.; Crane, H. M.; Liotta,
D. C. J. Org. Chem. 1993, 58, 4191.
We wish to thank CONACYT (Project 28762-E) and to
Emanuel Herna´ndez for financial and technical support.
Table 1. Diastereoselective reduction of g-N,N-dibenzylamino-b-ketophosphonates 4a–d
Entry
R
H:−
Temp. (°C)
Yield (%), 5a
syn:antib
c
c
1
2
3
4
5
6
7
i-Pr, 5b
i-Pr, 5b
i-Pr, 5b
i-Pr, 5b
Me, 5a
Bn, 5c
BH3·SMe2
DIBAL-H
NaBH4
CBd
−20
−78
−20
−20
−20
−20
−20
50
44
69
85
89
82
82:18
85:1512
\98:2
\98:2
\98:2
90:10
CBd
CBd
Ph, 5de
CBd
a Chemical yield after purification by column chromatography.11
b Determined by 1H NMR at 400 MHz.
c The reaction did not proceed.
d Catecholborane.
e The configuration of the amino acid used was (R).