COMMUNICATIONS
[1] C. O. Pabo, R. T. Sauer, Annu. Rev. Biochem. 1992, 61, 1053 ± 1095; D.
Rhodes, J. W. R. Schwabe, L. Chapman, L. Fairall, Phil. Trans. R. Soc.
London B 1996, 351, 501 ± 509.
[2] P. E. Nielsen, Chem. Eur. J. 1997, 3, 505 ± 508; H. E. Moser, P. B.
Dervan, Science 1987, 238, 645 ± 650; J. W. Trauger, E. E. Baird, P. B.
Dervan, Nature 1986, 382, 559 ± 561.
halides with silylated derivatives of selenium and tellurium
led to the isolation and characterization of many Cu ± Se
clusters such as [Cu146Se72(PPh3)30],[2] and a large number of
Ag ± Te clusters such as [Ag48(nBuTe)24Te12(PEt3)14].[3] This
method was applied recently for the synthesis and subsequent
structure determination of [Cd32Se14(SePh)36(PPh3)4] and
[Hg32Se14(SePh)36].[4] These compounds have similar struc-
tures to the previously described [Cd32Se14(SR)36(L)4] clusters
(R organic group; L H2O, DMF).[5] The compound
[Hg32Se14(SePh)36] can be formed by the treatment of
[Fe(CO)4(HgCl)2] with PhSeSiMe3. The synthesis of
[Fe(CO)4(HgCl)2] was described in 1928 by Hock and
Stuhlmann.[6] Recently the phosphane-bridged mercury clus-
ter [{(HgPtBu)4}3] was synthesized by the treatment of
[Fe(CO)4(HgOAc)2] with tBuP(SiMe3)2;[7] this cluster is not
accessible from the reaction of HgCl2 with silylated phos-
phanes.
In this work we present the reactions of [Fe(CO)4(HgX)2]
(X Cl, Br) with the silylated sulfur derivative tBuSSiMe3.
Only a few examples of metal-rich chalcogen-bridged mer-
cury complexes, such as the adamantane-like compounds
[Hg4(SPh)6(PPh3)4](ClO4)2, [Hg4(SPh)5(m2-Br)Br4](PPh4)2,[8]
and the complex [Hg4(tBuS)4(m2-Cl)2(Cl)2(py)2][9] have been
reported. Clegg and Sola et al.[10] have isolated the compound
[Hg7(SC6H11)12Br2], and characterized it by X-ray crystallog-
raphy.
[3] S. Neidel, Anti-Cancer Drug Des. 1997, 12, 433 ± 442; C. Giovannan-
 Á
geli, C. Helene, Antisense Nucleic Acid Drug Dev. 1997, 7, 413 ± 421;
L. J. Maher, Cancer Invest. 1996, 14, 66 ± 82.
Â
[4] C. Escude, J.-C. François, J.-S. Sun, G. Ott, M. Sprinzl, T. Garestier, C.
 Á
Helene, Nucleic Acids Res. 1993, 21, 5547 ± 5553.
[5] W. T. Markiewicz, J. Chem. Res. Synop. 1979, 24 ± 25; M. Krecmerova,
H. Hrebacebecky, A. Holly, Collect. Czech. Chem. Commun. 1990, 55,
2521 ± 2536.
[6] The difference in melting temperature between the fully matched
triplex and a complex containing one G:C mismatch in the double
stranded DNA ds(GCTAAGAAGAGAGAGAGATCG) indicates a
decrease of 9.98C for the 2'-aminoethoxy-modified oligonucleotide
and a decrease of 2.48C for the unmodified DNA oligonucleotide
control.
[7] C. J. Guinosso, G. D. Hoke, S. Frier, J. F. Martin, D. J. Ecker, C. K.
Mirabelli, S. T. Crooke, P. D. Cook, Nucl. Nucleotides 1991, 10, 259 ±
262.
[8] P. Martin, Helv. Chim. Acta 1995, 78, 486 ± 504.
[9] A. Szabo, L. Stolz, R. Granzow, Curr. Opin. Struct. Biol. 1995, 5, 699 ±
705.
Â
[10] M. Rougee, B. Faucon, J.-L. Mergny, F. Barcelo, C. Giovannangeli, T.
 Á
Garestier, C. Helene, Biochemistry 1992, 31, 9269 ± 9278; L. E. Xodo,
Eur. J. Biochem. 1995, 228, 918 ± 926.
[11] Upon binding of oligonucleotide I to its duplex DNA target, we
observed by circular dichroism the appearance of two strong minima
at 220 and 265 nm, indicative of the formation of a triple-strand
complex: V. N. Soyfwer, V. N. Potaman, Triple-Helical Nucleic Acids,
1st ed., Springer, New York, 1995, pp. 54 ± 55.
[12] R. H. Griffey, B. P. Monia, L. L. Cummins, S. Freier, M. J. Greig, C. J.
Guinosso, E. Lesnik, S. M. Manalili, V. Mohan, S. Owens, B. R. Ross,
H. Sasmor, E. Wancewicz, K. Weiler, P. D. Wheeler, P. D. Cook, J.
Med. Chem. 1996, 39, 5100 ± 5109.
Treatment of a suspension of [Fe(CO)4(HgX)2] (X Cl, Br)
in toluene with tBuSSiMe3 affords a yellow-red solution
within a few days. Crystals of the iron ± mercury clusters 1 ± 3,
which were characterized by X-ray crystallography, were
grown directly from this solution or by layering with n-
heptane (Scheme 1).[11]
[13] U. Pieles, W. Zürcher, M. Schär, H. E. Moser, Nucleic Acids Res. 1993,
21, 3191 ± 3196.
[14] T. J. Povsic, P. B. Dervan, J. Am. Chem. Soc. 1989, 111, 3059 ± 3061.
[15] V. Fritsch, R. Wolf, J. Biomol. Struct. Dyn. 1994, 11, 1161 ± 1174.
[16] E. S. Priestley, P. B. Dervan, J. Am. Chem. Soc. 1995, 117, 4761 ± 4765.
New Iron ± Mercury Clusters:
[Hg7{Fe(CO)4}5(StBu)3Cl],
[Hg14Fe12{Fe(CO)4}6S6(StBu)8Br18], and
[Hg39Fe8{Fe(CO)4}18S8(StBu)14Br28]**
Scheme 1. Synthesis of the iron ± mercury clusters 1 ± 3.
Dieter Fenske* and Marco Bettenhausen
The reaction of [Fe(CO)4(HgCl)2] with tBuSSiMe3 leads to
a yellow solution from which orange needles of 1 (Figure 1)
crystallize. Compound 1 consists of an Hg3Fe2 (Hg5-Fe4-Hg6-
Fe5-Hg7) and an Hg4Fe3 fragment (Hg1-Fe1-Hg2-Fe2-Hg3-
Fe3-Hg4). These Hg ± Fe chains are linked together by three
sulfur atoms from the tBuS groups and a chlorine atom. The
chlorine atom is in the center of the molecule with Hg ± Cl
bond lengths of 298.2(7) ± 359.6(7) pm. These values lie
significantly above the sum of the ionic radii of Hg2 and
The reaction of coinage-metal salts with phosphanes and
silylated chalcogen derivatives has already led to a great
number of new compounds.[1] For example, the reaction of
PR3 complexes (R organic group) of copper and silver
[*] Prof. Dr. D. Fenske, Dipl.-Chem. M. Bettenhausen
Institut für Anorganische Chemie der Universität
Engesserstrasse Gebäude-Nr. 30.45, D-76128 Karlsruhe (Germany)
Fax: (49)721-661921
[**] This work was supported by the Deutsche Forschungsgemeinschaft
(SFB 195) and the Bundesministerium für Bildung, Wissenschaft,
Forschung und Technologie. We thank G. Baum for the preparation of
Figure 3.
Cl (Cl ± Hg1
302.5(7),
Cl ± Hg5
303.5(7),
Cl ± Hg7
298.2(7) pm) or in the range of the van der Waals radii (Cl ±
Hg2 3596(7), Cl ± Hg3 330.4(7), Cl ± Hg4 337.0(7), Cl ± Hg6:
348.7(7) pm). Thus, the Hg ± Cl bonds are very weak. In
Angew. Chem. Int. Ed. 1998, 37, No. 9
ꢀ WILEY-VCH Verlag GmbH, D-69451 Weinheim, 1998
1433-7851/98/3709-1291 $ 17.50+.50/0
1291