164
P. Mathur et al. / Journal of Organometallic Chemistry 566 (1998) 159–164
Table 4
Table 5
˚
˚
Selected bond distances (A) and bond angles (°) for 3a
Selected bond distances (A) and bond angles (°) for one of the
independent molecule in the assymetric unit of 4
˚
Bond length (A)
˚
Fe(1)–Fe(2)
Fe(3)–Fe(4)
Fe(1)–Se(1)
Fe(2)–Se(1)
Fe(3)–Se(4)
Fe(4)–Se(4)
2.521(2)
2.509(2)
2.3751(12)
2.3590(12)
2.3779(12)
2.3666(12)
Se(1)–C(14)
Se(4)–C(21)
C(15)–O(8)
C(13)–C(14)
C(15)–C(18)
C(22)–C(21)
1.942(5)
1.929(5)
1.413(6)
1.310(7)
1.507(7)
1.317(7)
Bond length (A)
Fe(1)–Te(1)
Fe(1)–S(1)
Fe(2)–Te(1)
Fe(1)–Fe(2)
Fe(1)–S(1)
2.528(3)
2.240(4)
2.520(3)
2.549(3)
2.240(4)
Fe(2)–S(1)
2.237(5)
2.091(13)
1.47(2)
1.33(2)
1.49(2)
Te(1)–C(10)
C(10)–C(11)
C(9)–C(10)
C(11)–C(12)
Bond angle (°)
Bond angle (°)
Fe(1)–Se(1)–Fe(2) 64.35(4)
Fe(2)–Se(2)–Fe(1) 64.41(4)
Fe(3)–Fe(4)–Se(3) 57.50(3)
Fe(3)–Se(4)–Fe(4) 63.86(4)
Se(4)–C(21)–C(18) 118.0(4)
Fe(1)–Se(2)–C(13) 99.2(2)
Se(1)–C(14)–C(15) 115.5(4)
Fe(4)–Se(4)–C(21) 100.1(2)
Fe(2)–Te(1)–Fe(1) 60.65(8)
Te(1)–Fe(1)–Fe(2) 59.53(8)
Fe(2)–Te(1)–C(10) 95.84(4)
Fe(1)–Te(1)–C(10) 93.2(4)
Te(1)–C(10)–C(9) 117.4(11)
S(1)–C(11)–C(12) 107.3(10)
Te(1)–C(10)–C(11) 117.6(11)
C(9)–C(10)–C(11) 124.9(13)
S(1)–C(11)–C(10) 111.6(10)
Te(1)–Fe(2)–S(1)
Fe(2)–S(1)–Fe(1)
81.74(13)
69.42(13)
Te(1)–Fe(2)–Fe(1) 59.82(8)
Fe(2)–Fe(1)–S(1)
Te(1)–Fe(1)–S(1)
55.24(12)
81.52(13)
M.p. 178–180°C. Anal. Calc. (Found) for
Fe4Se2Te2C34O14H22: C, 34.14 (34.30), H, 1.84 (2.10%).
4: IR (cm−1): 2066 (s), 2029 (vs), 1998 (s), 1989 (m).
1H-NMR (ppm, CDCl3): l 0.96 (3H, t, CH3), 3.74 (2H,
4. Supplementary material available
q, OCH2), 4.49 (1H, d, C(H)S), 6.62 (1H, d, JTe–H
=
11.8 Hz, ꢀC(H)(OEt)), 7.10–7.28 (5H, m, C6H5). 13C-
NMR (ppm, CDCl3): l 15.3 (CH3, JC–H=127. Hz),
Crystallographic details including fractional atomic
coordinates for hydrogen atoms, bond lengths and
bond angles and anisotropic displacement parameters
and the structure factor tables for 3a and 4 are avail-
able, upon request, from the authors.
60.1 (CH(Ph), JC–H=144 Hz), 69.1 (OCH2, JC–H
=
145.6 Hz), 127.5–128.3 (C6H5), 139.6 (s, ꢀCTe), 150.1
(ꢀCH, JC–H=180.6 Hz), 209.8 (Fe(CO)3). 125Te-NMR
3
(ppm, CDCl3): l 737 (d, JTe–H=12.2 Hz, ꢀCTe). M.p.
104–106°C. Anal. Calc. (Found) for Fe2STeC17O7H12:
C, 34.04 (34.30); H, 2.00 (2.24%).
Acknowledgements
S. Ghosh would like to thank the Council for Scien-
tific and Industrial Research, New Delhi, for a Senior
Research Fellowship.
3.3. Crystal structure determination of 3a and 4
Red crystals of 3a and 4 were selected and mounted
with epoxy cement to glass fibres. Single crystal X-ray
data were collected on Siemans P4 diffractometer by
using Mo–Kh radiation. The unit-cell parameters were
obtained by the least-squares refinement of the angular
settings of 24 reflections (2052q525°). Pertinent crys-
tallographic data of 3a and 4 are summarized in Table
1. The systematic absences in the diffraction data of 3a
and 4 are uniquely consistent for the reported space
groups. The asymmetric unit of 4 consists of three
crystallographically-independent, but chemically identi-
cal molecules. The structures were solved using direct
methods, completed by subsequent difference Fourier
syntheses and refined by full-matrix least-squares proce-
dures. Empirical absorption corrections for 4 was ap-
plied by using program DIFABS [8]. All non-H atoms
were refined with anisotropic displacement coefficients
and H atoms were treated as idealized contributions.
All software and sources of the scattering factors are
contained in the SHELXTL (5.3) program library (G.
Sheldrick, Siemans XRD, Madison, WI). Final frac-
tional atomic coordinates, selected bond lengths and
bond angles for 3a and 4 are listed in Tables 2–5.
References
[1] (a) P. Mathur, S. Ghosh, A. Sarkar, C.V.V. Satyanarayana, A.L.
Rheingold, L.M. Liable-Sands, Organometallics 16 (1997) 3536
(b) P. Mathur, S. Ghosh, A. Sarkar, C.V.V. Satyanarayana,
V.G. Puranik, Organometallics 16 (1997) 4392.
[2] P. Mathur, S. Ghosh, A. Sarkar, A.L. Rheingold, I.A. Guzei,
Organometallics 17 (1998) 770.
[3] (a) K.H. Do¨tz, H. Fischer, P. Hofmann, F.R. Kreissel, U.
Schubert, K. Weiss, Transition Metal Carbene Complexes, Ver-
lag Chemie, Deerfield Beach, FL, 1984. (b) K.H. Do¨tz, Angew.
Chem. Int. Ed. Engl. 23 (1984) 587. (c) U. Schubert (Ed.),
Advances in Metal Carbene Chemistry, Kluwer Academic Pub-
lishers, Boston, MA, 1989. (d) W.D. Wulff, in: L.S. Liebeskind
(Ed.), Advances In Metal-Organic Chemistry, vol. 1, JAI Press,
Greenwich, CT, 1989.
[4] P. Mathur, S. Ghosh, A. Sarkar, C.V.V. Satyanarayana, J.E.
Drake, J. Yang, Organometallics 16 (1997) 6028.
[5] P. Mathur, D. Chakrabarty, M.M. Hossain, R.S. Rashid, J.
Organomet. Chem. 420 (1991) 79.
[6] P. Mathur, D. Chakrabarty, M.H. Hossain, R.S. Rashid, V.
Rugmini, A.L. Rheingold, Inorg. Chem. 31 (1992) 1106.
[7] E.O. Fischer, F.R. Kreissl, J. Organomet. Chem. 35 (1972) C47.
[8] N. Walker, D. Stuart, Acta Crystallogr. A 39 (1983) 158.