10.1002/anie.201903654
Angewandte Chemie International Edition
COMMUNICATION
Table 1. Spectroscopic and electrochemical data for 7Zn, 8Zn and 9Zn,
recorded at rt in CH2Cl2.
Reger, K. Roshchyna, D. Lungerich, N. Jux, F. Hauke, T. Clark, H.
Andreas, Angew. Chem. 2017, 129, 12352; f) Y.-Z. Tan, B. Yang, K.
Parvez, A. Narita, S. Osella, D. Beljonne, X. Feng, K. Müllen, Nat.
Commun. 2013, 4, 2646.
ortho-7Zn
meta-8Zn
para-9Zn
[8]
[9]
I. Diez-Perez, Z. Li, J. Hihath, J. Li, C. Zhang, X. Yang, L. Zang, Y. Dai,
X. Feng, K. Müllen, et al., Nat. Commun. 2010, 1, 31.
B. Limburg, J. O. Thomas, G. Holloway, H. Sadeghi, S. Sangtarash, I.
C.-Y. Hou, J. Cremers, A. Narita, K. Müllen, C. J. Lambert, et al., Adv.
Funct. Mater. 2018, 28, 1803629.
Abs:
l
Soret / nm
423.8 (53.1)
435 (28.3)[a]
425.4 (50.0)
433 (40.7)[a]
425.8 (45.9)
434.6 (46.5)
(
e
/ 104M-1cm-1)
Abs:
l
Q-bands / nm
550 (3.50)
589 (0.92)
551(3.60)
589 (1.00)
551(3.80)
589 (1.10)
(
e
/ 104M-1cm-1)
[10] a) E. Leary, B. Limburg, A. Alanazy, S. Sangtarash, I. Grace, K. Swada,
L. J. Esdaile, M. Noori, M. T. González, G. Rubio-Bollinger, et al., J.
Am. Chem. Soc. 2018, 140, 12877; b) E. Leary, C. Roche, H.-W. Jiang,
I. Grace, M. T. González, G. Rubio-Bollinger, C. Romero-Muñiz, Y.
Xiong, Q. Al-Galiby, M. Noori, et al., J. Am. Chem. Soc. 2018, 140, 710;
c) Z.-F. Liu, S. Wei, H. Yoon, O. Adak, I. Ponce, Y. Jiang, W.-D. Jang,
L. M. Campos, L. Venkataraman, J. B. Neaton, Nano Lett. 2014, 14,
5365; d) M. L. Perrin, F. Prins, C. A. Martin, A. J. Shaikh, R. Eelkema,
J. H. van Esch, T. Briza, R. Kaplanek, V. Kral, J. M. van Ruitenbeek, et
al., Angew. Chem. Int. Ed. 2011, 50, 11223; e) M. L. Perrin, F. Prins, C.
A. Martin, A. J. Shaikh, R. Eelkema, J. H. van Esch, T. Briza, R.
Kaplanek, V. Kral, J. M. van Ruitenbeek, et al., Angew. Chem. 2011,
123, 11419.
[11] a) E. J. Dell, B. Capozzi, J. Xia, L. Venkataraman, L. M. Campos, Nat.
Chem. 2015, 7, 209; b) Y. H. Tang, V. M. K. Bagci, J.-H. Chen, C.-C.
Kaun, J. Phys. Chem. C 2011, 115, 25105; c) Y. Ie, M. Endou, S. K.
Lee, R. Yamada, H. Tada, Y. Aso, Angew. Chem. Int. Ed. 2011, 50,
11980; d) Y. Ie, M. Endou, S. K. Lee, R. Yamada, H. Tada, Y. Aso,
Angew. Chem. 2011, 123, 12186.
FWHMSoret / nm
21.7
23.1
24.9
Fluo: lexc
:
b
-band
600 (0.25)
648 (0.27)
600 (0.28)
647 (0.27)
600 (0.30)
647 (0.29)
l
emi / nm (rel. int.)
Fluo:
l
exc: Soretmax
599 (0.99)
648 (1.00)
600 (1.00)
649 (0.95)
600 (1.00)
650 (0.92)
l
emi / nm (rel. int.)
Ered1, Ered2, Ered3 / V
Eox1, Eox2, Eox3 / V
Eg / eV
-1.8, -1.7, -1.5
0.7, 1.0, 1.3
2.2
-1.8, -1.7, -1.5
0.7, 1.0, 1.3
2.2
-1.8, -1.7, -1.5
0.7, 1.0, 1.3
2.2
[a] Shoulder.
[12] a) M. H. Garner, H. Li, Y. Chen, T. A. Su, Z. Shangguan, D. W. Paley,
T. Liu, F. Ng, H. Li, S. Xiao, et al., Nature 2018, 558, 415; b) S. Zhen,
J.-C. Mao, L. Chen, S. Ding, W. Luo, X.-S. Zhou, A. Qin, Z. Zhao, B. Z.
Tang, Nano Lett. 2018, 18, 4200; c) C. Ouyang, K. Hashimoto, H. Tsuji,
E. Nakamura, Y. Majima, ACS Omega 2018, 3, 5125; d) J. Sukegawa,
C. Schubert, X. Zhu, H. Tsuji, D. M. Guldi, E. Nakamura, Nat. Chem.
2014, 6, 899; e) I. Diez-Perez, J. Hihath, Y. Lee, L. Yu, L. Adamska, M.
A. Kozhushner, I. I. Oleynik, N. Tao, Nat. Chem. 2009, 1, 635.
[13] a) D. Lungerich, J. F. Hitzenberger, F. Hampel, T. Drewello, N. Jux,
Chem. Eur. J. 2018, 24, 15818;b) M. M. Martin, N. Jux, J. Porphyrins
Phthalocyanines 2018, 22, 454; c) W. Perkins, F. R. Fischer, Chem.
Eur. J. 2017, 466, 470; d) D. Lungerich, J. F. Hitzenberger, W.
Donaubauer, T. Drewello, N. Jux, Chem. Eur. J. 2016, 22, 16755; e) D.
Lungerich, J. F. Hitzenberger, M. Marcia, F. Hampel, T. Drewello, N.
Jux, Angew. Chem. Int. Ed. 2014, 53, 12231; f) D. Lungerich, J. F.
Hitzenberger, M. Marcia, F. Hampel, T. Drewello, N. Jux, Angew.
Chem. 2014, 126, 12427; g) J. M. Englert, J. Malig, V. A. Zamolo, H.
Andreas, N. Jux, Chem. Commun. 2013, 49, 4827; h) W. W. H. Wong,
T. Khoury, D. Vak, C. Yan, D. J. Jones, M. J. Crossley, A. B. Holmes, J.
Mater. Chem. 2010, 20, 7005.
Acknowledgements
Funded by the Deutsche Forschungsgemeinschaft (DFG) –
Projektnummer 182849149 – SFB 953. M.M.M. thanks the
German Fond der Chemischen Industrie (FCI) and the Graduate
School Molecular Science (GSMS) for financial support. D.L.
thanks the Alexander von Humboldt foundation (AvH) and the
Japan Society for the Promotion of Science (JSPS) for a
fellowship.
Conflict of interest
The authors declare no conflict of interest.
Keywords: Molecular electronics • Porphyrinoids •
Hydrocarbons • UV/Vis spectroscopy • Exchange interactions
[14] Results are taken in part from: D. Lungerich, Doctoral Thesis, Friedrich-
Alexander-Universität Erlangen-Nürnberg, 2017, urn:nbn:de:bvb:29-
opus4-83443.
[15] R. Yamaguchi, S. Ito, B. S. Lee, S. Hiroto, D. Kim, H. Shinokubo,
Chem. Asian J. 2013, 8, 178.
[16] a) D. Lungerich, D. Reger, H. Hölzel, R. Riedel, M. M. J. C. Martin, F.
Hampel, N. Jux, Angew. Chem. Int. Ed. 2016, 55, 5602; b) D.
Lungerich, D. Reger, H. Hölzel, R. Riedel, M. M. J. C. Martin, F.
Hampel, N. Jux, Angew. Chem. 2016, 128, 5692.
[17] K. Kobayashi, N. Kobayashi, M. Ikuta, B. Therrien, S. Sakamoto, K.
Yamaguchi, J. Org. Chem. 2005, 70, 749.
[18] R. Rathore, C. L. Burns, Org. Synth. 2005, 82, 30.
[19] P. A. Liddell, G. Kodis, L. de la Garza, A. L. Moore, T. A. Moore, D.
Gust, J. Phys. Chem. B 2004, 108, 10256.
[20] M. M. Martin, M. Dill, J. Langer, N. Jux, J. Org. Chem. 2019, 84, 1489.
[21] a) S. Cho, M. C. Yoon, C. H. Kim, N. Aratani, G. Mori, T. Joo, A. Osuka,
D. Kim, J. Phys. Chem. C 2007, 111, 14881; b) N. Toyama, M. Asano-
Someda, T. Ichino, Y. Kaizu, J. Phys. Chem. A 2000, 104, 4857.
[22] G. C. Solomon, C. Herrmann, T. Hansen, V. Mujica, M. A. Ratner, Nat.
Chem. 2010, 2, 223.
[1]
[2]
G. E. Moore, Electronics 1965, 38, 114.
a) D. Xiang, X. Wang, C. Jia, T. Lee, X. Guo, Chem. Rev. 2016, 116,
4318; b) T. A. Su, M. Neupane, M. L. Steigerwald, L. Venkataraman, C.
Nuckolls, Nat. Rev. Mater. 2016, 1, 16002; c) R. M. Metzger, Chem.
Rev. 2015, 115, 5056; d) L. Sun, Y. A. Diaz-Fernandez, T. A.
Gschneidtner, F. Westerlund, S. Lara-Avila, K. Moth-Poulsen, Chem.
Soc. Rev. 2014, 43, 7378.
[3]
[4]
D. V. Averin, K. K. Likharev, J. Low Temp. Phys. 1986, 62, 345.
B. Capozzi, J. Xia, O. Adak, E. J. Dell, Z.-F. Liu, J. C. Taylor, J. B.
Neaton, L. M. Campos, L. Venkataraman, Nat. Nanotech. 2015, 10,
522.
a) A. Narita, X.-Y. Wang, X. Feng, K. Müllen, Chem. Soc. Rev. 2015,
44, 6616; b) Y. Segawa, H. Ito, K. Itami, Nat. Rev. Mater. 2016, 1,
15002.
a) Q. Ai, K. Jarolimek, S. Mazza, J. E. Anthony, C. Risko, Chem. Mater.
2018, 30, 947; b) O. Ostroverkhova, Chem. Rev. 2016, 116, 13279.
a) D. Lungerich, O. Papaianina, M. Feofanov, J. Liu, M. Devarajulu, S.
I. Troyanov, S. Maier, K. Y. Amsharov, Nat. Commun. 2018, 9, 4756; b)
H. Ito, K. Ozaki, K. Itami, Angew. Chem. Int. Ed. 2017, 56, 11144; c) H.
Ito, K. Ozaki, K. Itami, Angew. Chem. 2017, 129, 11296; d) J.
Holzwarth, K. Y. Amsharov, D. I. Sharapa, D. Reger, K. Roshchyna, D.
Lungerich, N. Jux, F. Hauke, T. Clark, H. Andreas, Angew. Chem. Int.
Ed. 2017, 56, 12184; e) J. Holzwarth, K. Y. Amsharov, D. I. Sharapa, D.
[5]
[6]
[7]
[23] B. E. Tebikachew, H. B. Li, A. Pirotta, K. Börjesson, G. C. Solomon, J.
Hihath, K. Moth-Poulsen, J. Phys. Chem. C 2017, 121, 7094.
This article is protected by copyright. All rights reserved.