Letters
Journal of Medicinal Chemistry, 2005, Vol. 48, No. 23 7091
(2) Young, A. B.; Chu, D. Distribution of GABAA and GABAB
receptors in mammalian brain: potential targets for drug
development. Drug Dev. Res. 1990, 21, 161-167.
(3) (a) Luddens, H.; Korpi, E. R.; Seeburg, P. H. GABAA/benzodi-
azepine receptor heterogeneity: Neurophysiological implications.
Neuropharmacology 1995, 34, 245-254. (b) Stephenson, F. A.
The GABA-A receptors. Biochem. J. 1995, 310, 1-9. (c) Davies,
P. A.; Hanna, M. C.; Hales, T. G.; Kirkness, E. F. Insensitivity
to anaesthetic agents conferred by a class of GABA-A receptor
subunit. Nature 1997, 385, 820-823. (d) Whiting, P. J.; McAl-
lister, G.; Vasilatis, D.; Bonnert, T. P.; Heavens, R. P.; Smith,
D. W.; Hewson, L.; O’Donnell, R.; Rigby, M. R.; Sirinathsinghji,
D. J. S.; Marshall, G.; Thompson, S. A.; Wafford, K. A. Neu-
ronally restricted RNA splicing regulates the expression of a
novel GABAA receptor subunit conferring atypical functional
properties. J. Neurosci. 1997, 17, 5027-5037. (e) Bonnert, T.
P.; McKernan, R. M.; Farrar, S.; Le Bourdelles, B.; Heavens, R.
P.; Smith, D. W.; Hewson, L.; Rigby, M. R.; Sirinathsinghji, D.
J. S.; Brown, N.; Wafford, K. A.; Whiting, P. J. θ, a novel
γ-aminobutyric acid type A receptor subunit. Proc. Natl. Acad.
Sci. U.S.A. 1999, 96, 9891-9896. (f) Barnard, E. A.; Skolnick,
P.; Olsen, R. W.; Mohler, H.; Sieghart, W.; Biggio, G.; Braestrup,
C.; Bateson, A. N.; Langer, S. Z. Subtypes of γ-aminobutyric acid
A receptors: classification on the basis of subunit structure and
receptor function. Pharmacol. Rev. 1998, 50, 291-313.
(4) McKernan, R. M.; Whiting, P. J. Which GABA-A receptor
subtypes really occur in the brain? Trends Neurosci. 1996, 19,
139-143.
Figure 1. Efficacy of 17 expressed relative to a nonselective
full agonist in the rat elevated plus maze (anxiolytic) and
chain-pulling (sedation) assays. In the elevated plus maze, the
percent time spent on the open arms during the 5 min trial
time is expressed relative to the increase seen with the
nonselective full agonist chlordiazepoxide (5 mg/kg). For the
chain-pulling assay, the decrease in the mean rate of respond-
ing over the 60 min trial period was compared to diazepam
(10 mg/kg). The clear separation between anxiolysis and
sedation is apparent.
(5) Farrar, S. J.; Whiting, P. J.; Bonnert, T. P.; McKernan, R. M.
Stoichiometry of a ligand-gated ion channel determined by
fluorescence energy transfer. J. Biol. Chem. 1999, 274, 10100-
10104.
(6) Sieghart, W. Structure and pharmacology of γ-aminobutyric
acid-A receptor subtypes. Pharmacol. Rev. 1995, 47, 181-234.
(7) Grundstrom, R.; Holmberg, G.; Hansen, T. Degree of sedation
obtained with various doses of diazepam and nitrazepam. Acta
Pharmacol. Toxicol. 1978, 43, 13-18.
(8) Hudson, R. D.; Wolpert, M. K. Central muscle relaxant effects
of diazepam. Neuropharmacology 1970, 9, 481-488.
(9) Clarke, P. R. F.; Eccersley, P. S.; Frisby, J. P.; Thornton, J. A.
Amnesic effect of diazepam (valium). Br. J. Anaesth. 1970, 42,
690-7.
(10) Rush, C. R. Behavioral pharmacology of zolpidem relative to
benzodiazepines: a review. Pharmacol., Biochem. Behav. 1998,
61, 253-269.
(11) McKernan, R. M.; Rosahl, T. W.; Reynolds, D. S.; Sur, C.;
Wafford, K. A.; Atack, J. R.; Farrar, S.; Myers, J.; Cook, G.;
Ferris, P.; Garrett, L.; Bristow, L.; Marshall, G.; Macaulay, A.;
Brown, N.; Howell, O.; Moore, K. W.; Carling, R. W.; Street, L.
J.; Castro, J. L.; Ragan, C. I.; Dawson, G. R.; Whiting, P. J.
Sedative but not anxiolytic properties of benzodiazepines are
mediated by the GABAA receptor R1 subtype. Nat. Neurosci.
2000, 3, 587-592.
(12) Rudolph, U.; Crestani, F.; Benke, D.; Bru¨nig, I.; Benson, J. A.;
Fritschy, J.-M.; Martin, J. R.; Bluethmann, H.; Mo¨hler, H.
Benzodiazepine actions mediated by specific γ-aminobutyric
acidA receptor subtypes. Nature 1999, 401, 796-800.
(13) Yu, S.; He, X.; Ma, C.; McKernan, R.; Cook, J. M. Studies in
search of R2 selective ligands for GABAA/BzR receptor subtypes.
Part 1. Evidence for the conservation of pharmacophoric descrip-
tors for DS subtypes. Med. Chem. Res. 1999, 9, 186-202.
(14) Albaugh, P. A.; Marshall, L.; Gregory, J.; White, G.; Hutchison,
A.; Ross, P. C.; Gallagher, D. W.; Tallman, J. F.; Crago, M.;
Casella, J. V. Synthesis and biological evaluation of 7,8,9,10-
tetrahydroimidazo[1,2-c]pyrido[3,4-e]pyrimidin-5(6H)-ones as func-
tionally selective ligands of the benzodiazepine receptor site on
the GABA-A receptor. J. Med. Chem. 2002, 45, 5043-5051.
(15) Collins, I.; Moyes, C.; Davey, W. B.; Rowley, M.; Castro, J. L.;
Bromidge, F.; Quirk, K.; Atack, J. R.; McKernan, R. M.;
Thompson, S. A.; Wafford, K.; Dawson, G. R.; Pike, A.; Sohal,
B.; Tsou, N. N.; Ball, R. G. 3-Heteroaryl-2-pyridones: Benzodi-
azepine site agonists with functional selectivity for R2/R3-
subtypes of human GABAA receptor-ion channels. J. Med. Chem.
2002, 45, 1887-1900.
(16) Crawforth, J.; Atack, J. R.; Cook, S. M.; Gibson, K. R.; Nadin,
A.; Owens, A. P.; Pike, A.; Rowley, M.; Smith, A. J.; Sohal, B.;
Sternfeld, F.; Wafford, K.; Street, L. J. Tricyclic pyridones as
functionally selective human GABAA R2/3 receptor-ion channel
ligands. Bioorg. Med. Chem. 2004, 14, 1679-1682.
(17) Carling, R. W.; Moore, K. W.; Street, L. J.; Wild, D.; Isted, C.;
Leeson, P. D.; Thomas, S.; O’Connor, D.; McKernan, R. M.;
Quirk, K.; Cook, S. M.; Atack, J. R.; Wafford, K. A.; Thompson,
S. A.; Dawson, G. R.; Ferris, P.; Castro, J. L. 3-Phenyl-6-(2-
pyridyl)methyloxy-1,2,4-triazolo[3,4-a]phthalazines and ana-
logues: High affinity GABAA benzodiazepine receptor ligands
with R2, R3, and R5-subtype binding selectivity over R1. J. Med.
Chem. 2004, 47, 1807-1822.
to be a development candidate because metabolism
studies showed that triazolopyridazines with an unsub-
stituted 3-phenyl ring have a tendency to undergo
extensive glutathione incorporation in vivo. In an at-
tempt to overcome this problem, fluorination of the
phenyl ring was explored leading to the identification
of the development candidate 7-(1,1-dimethylethyl)-6-
(2-ethyl-2H-1,2,4-triazol-3-ylmethoxy)-3-(2-fluorophenyl)-
1,2,4-triazolo[4,3-b]pyridazine (17, TPA023). Compound
17 is a high-affinity antagonist at R1-containing recep-
tors but is a high-affinity, low-efficacy partial agonist
at R2 and R3 receptors; it has good pharmacokinetics
in rat and dog (rat, F ) 35%, t1/2 ) 1.4 h; dog, F ) 53%,
t1/2 ) 1.5 h) and has excellent occupancy of central
GABAA receptors following oral dosing ([3H]Ro15-1788)
binding assay25 ID50 ) 0.42 mg/kg, Tmax ) 0.5 h). The
pharmacokinetic properties of 17 and lack of efficacy
at the R5 subtype (modulation of a GABA EC20 ) 6%)
confer advantages over L-838417,26 whereas 17 lacks
both R1 and R5 efficacy relative to 15 (TP1327). When
tested in the standard rat anxiety assay, the elevated
plus maze assay (Figure 1),28 17 was anxiolytic at doses
of 1 and 3 mg/kg po (corresponding to 70% and 88%
occupancy, respectively) without causing significant
impairment at a dose of 30 mg/kg po (99% occupancy)
in the rat chain-pulling and mouse rotarod assays of
myorelaxation and/or ataxia.29 Compound 17 was also
a nonsedating anxiolytic in primates29 and in baboons
did not cause self-administration nor did it produce
subjective feelings similar to the nonselective full ago-
nist lorazepam.30 These data clearly suggest that 17
possesses a preclinical profile unlike existing nonselec-
tive benzodiazepines and suggest that anxiolytic efficacy
can be separated from sedation and dependence.30
Supporting Information Available: Experimental pro-
cedures for synthesis and characterization of intermediates
and final products. This material is available free of charge
References
(1) Rabow, L. E.; Russek, S. J.; Farb, D. H. From ion currents to
genomic analysis: Recent advances in GABAA receptor research.
Synapse 1995, 21, 189-274.