J. Am. Chem. Soc. 1998, 120, 1635-1636
P-Chiral Bis(trialkylphosphine) Ligands and Their
1635
Use in Highly Enantioselective Hydrogenation
Reactions
Tsuneo Imamoto,*,† Junko Watanabe,† Yoshiyuki Wada,‡
Hideki Masuda,‡ Hironari Yamada,† Hideyuki Tsuruta,†
Satoru Matsukawa,† and Kentaro Yamaguchi§
Figure 1.
Department of Chemistry, Faculty of Science and
Chemical Analysis Center, Chiba UniVersity
Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
Material R & D Laboratories, Ogawa and Co., Ltd.
Shoo-cho, Katsuta, Okayama 709-4321, Japan
Scheme 1
ReceiVed October 1, 1997
Optically active phosphines play a most important role as the
chiral ligands in various metal-catalyzed asymmetric reactions,
and numerous chiral phosphines have been designed and syn-
thesized over the past three decades.1 Among them, some P-chiral
phosphines such as (R,R)-1,2-bis[(o-methoxyphenyl)phenylphos-
phino]ethane (DIPAMP) were landmark discoveries at an early
stage in the history of asymmetric hydrogenation reactions.2,3
Thereafter, however, relatively less attention has been paid to
P-chiral phosphine ligands in the field of asymmetric catalysis.4
This is largely ascribed not only to the synthetic difficulty of
highly enantiomerically enriched P-chiral phosphines but also to
the fact that this class of phosphines, especially diaryl- and
triarylphosphines, are configurationally unstable and gradually
racemize at high temperatures.5
On the other hand, optically active trialkylphosphines are
known to hardly racemize even at considerably high temperature.6
On the basis of this fact, we designed a new class of P-chiral
phosphine ligands, 1,2-bis(alkylmethylphosphino)ethanes (alkyl
) tert-butyl, 1,1-diethylpropyl, 1-adamantyl, cyclopentyl, cyclo-
hexyl) (abbreviated as BisP*) (Figure 1).7 An important feature
of these ligands is that a bulky alkyl group and the smallest alkyl
group (methyl group) are bonded to each phosphorus atom. The
ligands would form five-membered C2-symmetric chelates, and
this imposed asymmetric environment might lead to high enan-
tioselectivity in asymmetric reactions. It is also anticipated that
these electron-rich trialkylphosphine ligands provide very high
catalytic efficiencies in transition-metal-catalyzed homogeneous
hydrogenations.8,9
The preparation of the designed P-chiral phosphine ligands and
their Rh-complexes has been accomplished using phosphine
boranes as the intermediates (Scheme 1).10 Evans et al. reported
that aryldimethylphosphine boranes were subjected to enantio-
selective deprotonation by a s-BuLi-(-)-sparteine complex,
followed by oxidative coupling using Cu(OPiv)2, to afford C2-
symmetric bisphosphine boranes in excellent enantiomeric ex-
cesses (ee), but they did not describe the reactions of alkyldi-
methylphosphine boranes.11 We applied their method to alkyl-
dimethylphosphine boranes 1a-e which were synthesized in one
pot from phosphorus trichloride. The reactions of 1a-c afforded
highly enantiomerically enriched C2-symmetric bisphosphines
2a-c along with minor amounts of the meso diastereomers.12
On the other hand, compounds 1d and 1e provided the corre-
sponding C2-symmetric products 2d and 2e with relatively low
† Department of Chemistry, Faculty of Science.
‡ Ogawa Co., Ltd.
§ Chemical Analysis Center.
(1) For representative reviews, see the following: (a) Noyori, R. Asymmetric
Catalysis in Organic Synthesis; Wiley & Sons: New York, 1994; Chapter 2.
(b) Ojima, I., Ed. Catalytic Asymmetric Synthesis; VCH Publishers: Weinheim,
1993; Chapter 1. (c) Koenig, K. E. Applicability of Asymmetric Homogeneous
Catalytic Hydrogenation. In Asymmetric Synthesis; Morrison, J. D., Ed.;
Academic Press: New York, 1985; Vol. 5, Chapter 3.
(2) Horner, L.; Siegel, H.; Buthe, H. Angew. Chem., Int. Ed. Engl. 1968,
7, 942.
(3) (a) Knowles, W. S.; Sabacky, M. J. J. Chem. Soc., Chem. Commun.
1968, 1445. (b) Knowles, W. S.; Sabacky, M. J.; Vineyard, B. D. J. Chem.
Soc., Chem. Commun. 1972, 10. (c) Knowles, W. S.; Sabacky, M. J.; Vineyard,
B. D.; Weinkauff, D. J. J. Am. Chem. Soc. 1975, 97, 2567. (d) Vineyard, B.
D.; Knowles, W. S.; Sabacky, M. J.; Bachman, G. L.; Weinkauff, D. J. J.
Am. Chem. Soc. 1977, 99, 5946. (e) Knowles, W. S. Acc. Chem. Res. 1983,
16, 106.
(4) (a) Roberts, N. K.; Wild, S. B. J. Am. Chem. Soc. 1979, 101, 6254. (b)
Horner, L. Pure Appl. Chem. 1980, 52, 843. (c) Knowles, W. S.; Christopfel,
W. C.; Koenig, K. E.; Hobbs, C. F. AdV. Chem. Ser. 1982, 196, 325. (d)
Yoshikuni, T.; Bailar, J. C., Jr. Inorg. Chem. 1982, 21, 2129. (e) Horner, L.;
Simons, G. Z. Naturforsch. 1984, 396, 512. (f) Allen, D. G.; Wild, S. B.;
Wood, D. L. Organometallics 1986, 5, 1009. (g) Johnson, C. R.; Imamoto,
T. J. Org. Chem. 1987, 52, 2170. (h) Burgess, K.; Ohlmeyer, M. J.; Whitmire,
K. H. Organometallics 1992, 11, 3588. (i) Corey, E. J.; Chen, Z.; Tanoury,
G. J. J. Am. Chem. Soc. 1993, 115, 11000. (j) Nagel, U.; Krink, T. Angew.
Chem., Int. Ed. Engl. 1993, 32, 1052. (k) Imamoto, T.; Tsuruta, H.; Wada,
Y.; Masuda, H.; Yamaguchi, K. Tetrahedron Lett. 1995, 36, 8271. (l)
Brenchley, G.; Fedouloff, M.; Mahon, M. F.; Molloy, K. C.; Wills, M.
Tetrahedron 1995, 51, 10581. (m) Brenchley, G.; Fedouloff, M.; Merifield,
E.; Wills, M. Tetrahedron: Asymmetry 1996, 7, 2809. (n) Vedejs, E.; Donde,
Y. J. Am. Chem. Soc. 1997, 119, 9293.
(7) A similar bisphosphine ligand, (S,S)-1,2-bis(methylphenylphosphino)-
ethane, was previously synthesized and employed as a chiral ligand in rhodium-
catalyzed asymmetric hydrogenation of N-benzoyl-R-aminocinnamic acid.4e
The enantioselectivity of the reduction was reported to be 22% ee.
(8) Burk and co-workers have demonstrated that Rh and Ru catalysts
bearing C2-symmetric bis(trialkylphosphines), 1,2-bis(trans-2,5-dialkylphos-
pholano)ethanes (BPE), exhibit not only very high enantioselectivities but also
exceedingly high catalytic efficiencies in asymmetric hydrogenations of various
olefinic and carbonyl substrates. (a) Burk, M. J.; Feaster, J. E.; Harlow, R. L.
Organometallics 1990, 9, 2653. (b) Burk, M. J. J. Am. Chem. Soc. 1991, 113,
8518. (c) Burk, M. J.; Feaster, J. E.; Nugent, W. A.; Harlow, R. L. J. Am.
Chem. Soc. 1993, 115, 10125. (d) Burk, M. J.; Harper, T. G. P.; Kalberg, C.
S. J. Am. Chem. Soc. 1995, 117, 4423. (e) Burk, M. J.; Gross, M. F.; Martinez,
J. P. J. Am. Chem. Soc. 1995, 117, 9375. (f) Burk, M. J.; Wang, Y. M.; Lee,
J. R. J. Am. Chem. Soc. 1996, 118, 5142.
(5) (a) Pietrusiewicz, K. M.; Zablocka, M. Chem. ReV. 1994, 94, 1375. (b)
Imamoto, T. In Handbook of Organophosphorus Chemistry; Engel, R., Ed.;
Marcel Dekker: New York, 1992; Chapter 1. (c) Kagan, H. B.; Sasaki, M. In
Chemistry of Organophosphorus Compounds; Hartley, F. R., Ed.; Wiley &
Sons: New York, 1990; Vol. 1, Chapter 3. (d) Valentine, D., Jr. In Asymmetric
Synthesis; Morrison, J. D., Scott, J. W., Eds.; Academic Press: New York,
1984; Vol. 4, Chapter 3.
(9) Inoguchi, K.; Sakuraba, S.; Achiwa, K. Synlett 1992, 169.
(10) (a) Imamoto, T.; Kusumoto, T.; Suzuki, N.; Sato, K. J. Am. Chem.
Soc. 1985, 107, 5301. (b) Imamoto, T.; Oshiki, T.; Onozawa, T.; Kusumoto,
T.; Sato, K. J. Am. Chem. Soc. 1990, 112, 5244. (c) Juge, S.; Stephan, M.;
Laffitte, J. A.; Genet, J. P. Tetrahedron Lett. 1990, 31, 6357. (d) Yang, H.;
Lugan, N.; Mathieu, R. Organometallics 1997, 16, 2089.
(11) Muci, A. R.; Campos, K. R.; Evans, D. A. J. Am. Chem. Soc. 1995,
117, 9075.
(6) Baechler, R. D.; Mislow, K. J. Am. Chem. Soc. 1970, 92, 3090.
S0002-7863(97)03423-9 CCC: $15.00 © 1998 American Chemical Society
Published on Web 02/06/1998