COMMUNICATIONS
an AA'MM'XX' pattern, 2H; Rh H); 31P{1H} NMR (C6D6, 85%
H3PO4): d 57.4 (AA' part of an AA'XX' pattern); 29Si{1H} NMR
(C6D6, TMS): d 157.8 (t, 2J(P,Si) 50 Hz), 28.7 (tt, 2J(P,Si) 50,
Experimental Section
3: A solution of 1 (264 mg, 0.24 mmol) in toluene (5 mL) was stirred for 2 h
at 708C. During the reaction the color of the solution changed from yellow
to orange. Gas-chromatographic analysis of the solution showed quanti-
tative formation of benzene. The 31P{1H} NMR spectrum of the mixture
after the reaction showed only the signal for 3. Addition of pentane caused
separation of 3 as yellow-orange crystals, which were collected by filtration
and recrystallized from toluene/pentane (71 mg, 29% yield). The similar
reaction of 2 gave 4 in 51% yield.
1
1J(Rh,Si) 8 Hz). 4: H NMR (C6D6, TMS): d 6.76 ± 7.88 (m, 20H;
aromatic H), 1.12 (m, 6H; P CH), 0.86 (m, 36H; CH3), 17.60 (AA'
part of an AA'MM'XX' pattern, 2H; Rh H); 31P{1H} NMR (C6D6,
85% H3PO4): d 58.2 (AA' part of an AA'XX' pattern).
[11] a) M. Auburn, M. Ciriano, J. A. K. Howard, M. Murray, N. J. Pugh,
J. L. Spencer, F. G. A. Stone, P. Woodward, J. Chem. Soc. Dalton
Trans. 1980, 659; b) D. E. Hendriksen, A. A. Oswald, G. B. Ansell, S.
Leta, R. V. Kastrup, Organometallics 1989, 8, 1153; c) S. K. Thomson,
G. B. Young, ibid. 1989, 8, 2068; d) P. Burger, R. G. Bergman, J. Am.
Chem. Soc. 1993, 115, 10462; e) T. Rappert, O. Nürnberg, H. Werner,
Organometallics 1993, 12, 1359; f) M. Baum, B. Windmüller, H.
Werner, Z. Naturforsch. B 1994, 49, 859; g) D. Huang, R. H. Heyn,
J. C. Bollinger, K. G. Caulton, Organometallics 1997, 16, 292.
The kinetic measurements of the conversion were carried out in a
thermostatted (708C) NMR probe by following the changes in the
intensities of the 1H NMR signal for the hydrido ligands of 1. Dioxane
was used as an internal standard.
Received: August 19, 1997 [Z10834IE]
German version: Angew. Chem. 1998, 110, 364 ± 366
Keywords: bridging ligands ´ rhodium ´ Si ligands
A Glucose-Containing Ether Lipid (Glc-PAF)
as an Antiproliferative Analogue of the
Platelet-Activating Factor**
[1] a) W. A. G. Graham, J. Organomet. Chem. 1986, 300, 81, and
references therein; b) U. Schubert, Adv. Organomet. Chem. 1990,
Ä
30, 151, and references therein; c) R. Carreno, V. Riera, M. A. Ruiz, Y.
Jeannin, M. Philoche-Levisalles, J. Chem. Soc. Chem. Commun. 1990,
15; d) M. D. Fryzuk, L. Rosenberg, S. J. Rettig, Organometallics 1991,
10, 2537; ibid. 1996, 15, 2871; e) H. Suzuki, T. Takao, M. Tanaka, Y.
Moro-oka, J. Chem. Soc. Chem. Commun. 1992, 476; f) T. Takao, S.
Yoshida, H. Suzuki, M. Tanaka, Organometallics 1995, 14, 3855; g)
B. K. Campion, R. H. Heyn, T. D. Tilley, ibid. 1992, 11, 3918; h) R. S.
Simons, C. A. Tessier, ibid. 1996, 15, 2604.
Michael Mickeleit, Thomas Wieder, Michael Arnold,
Christoph C. Geilen, Johann Mulzer, and
Werner Reutter*
It has long been known that the platelet-activating factor
(PAF) is a biologically highly active phosphoglyceride,[1] and
various PAF analogues have been reported as inhibitors of
proliferation.[2] However, since synthetic phospholipids are
strongly cytotoxic, their therapeutic use has hitherto been
restricted to topical applications.[3] We reported earlier the
synthesis of a new type of glyceroglucolecithin (Glc-PC)[4]
which displayed antiproliferative activity without cytotoxicity
[2] a) A. Heine, D. Stalke, Angew. Chem. 1993, 105, 90; Angew. Chem. Int.
Ed. Engl. 1993, 32, 121; b) A. Heine, R. Herbest-Irmer, D. Stalke, J.
Chem. Soc. Chem. Commun. 1993, 1729.
[3] a) P. Braunstein, M. Knorr, B. Hirle, G. Reinhard, U. Schubert, Angew.
Chem. 1992, 104, 1641; Angew. Chem. Int. Ed. Engl. 1992, 31, 1583; b)
M. Knorr, P. Braunstein, A. Tiripicchio, F. Ugozzoli, Organometallics
1995, 14, 4910; c) M. Knorr, E. Hallauer, V. Huch, M. Veith, P.
Braunstein, ibid. 1996, 15, 3868.
[4] W. Lin, S. R. Wilson, G. S. Girolami, Organometallics 1994, 13, 2309.
[5] R. Bender, P. Braunstein, A. Dedieu, Y. Dusausoy, Angew. Chem.
1989, 101, 931, Angew. Chem. Int. Ed. Engl. 1989, 28, 923.
1
at concentrations below 10 mmolL . We now present the
glycoside of the ether analogue [1-O-octadecyl-2-O-a-d-
glucopyranosyl-sn-glycero(3)]phosphorylcholine (Glc-PAF,
1), which is formally derived from the PAF by exchanging
the 2-acyl group for a glucose molecule.
The glycerol skeleton is provided by the starting material
(S)-isopropylidene glycerol (2),[5] whose hydroxyl group is
protected as the allyl ether functionality in 3 for introduction
of the end groups (Scheme 1). The primary hydroxyl group of
the diol 4 released upon acid hydrolysis cannot react directly
to form an ether, and it is therefore first converted into a
terminal benzoate ester group.[6] Compound 5 undergoes
[6] K. Osakada, T. Koizumi, T. Yamamoto, Organometallics 1997, 16, 2063.
[7] 2: 1H NMR (C6D6, TMS): d 7.59 (dd, 3J(H,H) 9, 3J(H,F) 2 Hz,
12H; aromatic H), 6.90 (t, 3J(H,H) 3J(H,F) 9 Hz, 12H; aromatic
H), 1.54 (m, 3J(P,H) 7 Hz, 6H; P CH), 0.82 (br, 36H; CH3), 12.55
(tt, 1J(Rh,H) 58, 2J(P,H) 25 Hz, 1H; Rh-H-Rh), 16.07 (AA' part
of an AA'MM'XX' pattern, 2H; Rh H); 31P{1H} NMR (C6D6, 85%
H3PO4): d 54.2 (AA' part of an AA'XX' pattern).
[8] Crystallographic data for 4: C48H64ClF5P2Rh2Si2, Mr 1095.41, mono-
clinic, space group P21/c (no. 14), a 18.146(10), b 12.806(8), c
1
21.512(9) , b 90.39(3)8,
V
4998 3, Z 4, m 8.74 cm
,
F(000) 2248, 1calcd 1.455 g cm 3. The final R factor was 0.075
(Rw 0.059) for 7999 reflections with I > 3s(I). Data collection on a
RIGAKU-AFC5R diffractometer at 298 K with graphite-monochro-
mated MoKa radiation (l 0.71073 ). The structure was solved with
the program teXsan. Crystallographic data (excluding structure
factors) for the structure reported in this paper have been deposited
with the Cambridge Crystallographic Data Centre as supplementary
publication no. CCDC-100766. Copies of the data can be obtained
free of charge on application to CCDC, 12 Union Road, Cambridge
CB21EZ, UK (fax: int. code (49)1223-336033; e-mail: depos-
it@ccdc.cam.ac.uk).
[*] Prof. Dr. W. Reutter, Dr. T. Wieder
Institut für Molekularbiologie und Biochemie der Freien Universität
Arnimallee 22, D-14195 Berlin (Germany)
Fax: Int. code (49)30838-2141
Prof. Dr. J. Mulzer
Institut für Organische Chemie der Universität Wien (Austria)
Dr. M. Mickeleit
Institut für Organische Chemie der Freien Universität Berlin
[9] a) K. W. Muir, J. A. Ibers, Inorg. Chem. 1970, 9, 440; b) M.-J.
Fernandez, P. M. Bailey, P. O. Bentz, J. S. Ricci, T. F. Koetzle, P. M.
Maitlis, J. Am. Chem. Soc. 1984, 106, 5458; c) F. L. Joslin, S. R. Stobart,
J. Chem. Soc. Chem. Commun. 1989, 504; d) D. L. Thorn, R. L.
Harlow, Inorg. Chem. 1990, 29, 2017; e) K. Osakada, K. Hataya, Y.
Nakamura, M. Tanaka, T. Yamamoto, J. Chem. Soc. Chem. Commun.
1993, 576; ibid. 1995, 2315.
Priv.-Doz. Dr. Dr. C. C. Geilen, M. Arnold
Haut- und Poliklinik des Universitätsklinikums Benjamin Franklin
Freie Universität Berlin
[**] These investigations were supported by the Bundesministerium für
Bildung, Wissenschaft, Forschung und Technologie (W.R.), zentrale
Mittel (FNK) der Freien Universität Berlin, the Fonds der Chem-
ischen Industrie, and the Deutsche Forschungsgemeinschaft (Ge 641/
3-3).
[10] 3: 1H NMR (C6D6, TMS): d 6.9 ± 8.2 (m, 25H; aromatic H), 1.18 (m,
3J(P,H) 7 Hz, 6H; P CH), 0.95 (m, 36H; CH3), 17.40 (AA' part of
Angew. Chem. Int. Ed. 1998, 37, No. 3
ꢀ WILEY-VCH Verlag GmbH, D-69451 Weinheim, 1998
1433-7851/98/3703-0351 $ 17.50+.50/0
351