Filatov et al.
CHART 1. 5,15-Diaryltetrabenzoporphyrin (Ar2TBP)
practical approaches, efforts were mainly directed toward
tetraarylated tetrabenzo- and tetranaphthoporphyrins (Ar4TBPs
and Ar4TNPs), whose modification can be conveniently ac-
complished via the meso-aryl rings. The method employing
oxidative aromatization6has emerged as a straightforward and
Ar4TNPs.8 and practical approach to Ar4TBPs7 The synthesis
in this route proceeds via the well-established Lindsey
chemistry,9allowing for a variety of functional groups to be
placed at the macrocycle periphery. This strategy was later
extended on the synthesis of meso-unsubstituted tetrabenzo- and
tetranaphthoporphyrins (TBPs and TNPs).10
Recently, a useful extension of the oxidative aromatization
method was developed, which is based on a convenient
precursor, 4,7-dihydroisoindole.11 Using this method, we syn-
thesized and for the first time unambiguously characterized
meso-5,15-diphenyltetrabenzoporphyrin,12 the simplest repre-
sentative of the class of 5,15-diaryltetrabenzoporphyrins
(Ar2TBP, Chart 1).13 It appeared that the optical absorption
spectrum of free base 5,15-Ph2TBP (H2Ph2TBP) strongly
resembled the spectra of meso-unsubstituted H2TBPs,10,14 sug-
gesting that H2Ar2TBPs also possess undistorted planar geom-
etries15 and highly emissive excited states.2a,14,16 The combi-
nation of the red absorption, strong emissivity, and ease of
functionalization suggests that Ar2TBPs can be utilized in a wide
variety of applications, including biomedical imaging, optical
sensing, and PDT.
In addition to forming a distinct group among π-extended
porphyrins, Ar2TBPs belong to a much wider family of meso-
5,15-diarylporphyrins (Ar2Ps). Ar2Ps have been known since
1968,17 and over the years, they have become one of the most
widely used building blocks for construction of porphyrin-based
macrostructures. The latter include, but are not limited to,
porphyrin dimers,18 linear19 and branched20 arrays, models of
the photosynthetic antenna and reaction center,21 supramolecular
assemblies,22 strapped porphyrins, including biomimetic mod-
els,23 porphyrin-based catenanes and rotaxanes,24 dyads and
(2) (a) Vinogradov, S. A.; Wilson, D. F. J. Chem. Soc., Perkin Trans. 2 1995,
103–111. (b) Dunphy, I.; Vinogradov, S. A.; Wilson, D. F. Anal. Biochem. 2002,
310, 191–198. (c) Finikova, O. S; Galkin, A.; Rozhkov, V. V.; Cordero, M.;
Ha¨gerha¨ll, C.; Vinogradov, S. A. J. Am. Chem. Soc. 2003, 125, 4882–4893. (d)
Rietveld, I. B.; Kim, E.; Vinogradov, S. A. Tetrahedron 2003, 59, 3821–3831.
(e) Apreleva, S. V.; Wilson, D. F.; Vinogradov, S. A. Appl. Opt. 2006, 45, 8547–
8559. (f) Wilson, D. F.; Lee, W. M. F.; Makonnen, S.; Finikova, O.; Apreleva,
S.; Vinogradov, S. A. J. Appl. Physiol. 2006, 101, 1648–1656. (g) Finikova,
O. S.; Troxler, T.; Senes, A.; DeGrado, W. F.; Hochstrasser, R. M.; Vinogradov,
S. A. J. Phys. Chem. A 2007, 111, 6977–6990.
(3) (a) Baluschev, S.; Yakutkin, V.; Miteva, T.; Avlasevich, Y.; Chernov,
S.; Aleshchenkov, S.; Nelles, G.; Cheprakov, A.; Yasuda, A.; Mullen, K.;
Wegner, G. Angew. Chem., Int. Ed. 2007, 46, 7693–7696. (b) Baluschev, S.;
Yakutkin, V.; Wegner, G.; Miteva, T.; Nelles, G.; Yasuda, A.; Chernov, S.;
Aleshchenkov, S.; Cheprakov, A. Appl. Phys. Lett. 2007, 90, 181103. (c)
Baluschev, S.; Yakutkin, V.; Miteva, T.; Wegner, G.; Roberts, T.; Nelles, G.;
Yasuda, A.; Chernov, S.; Aleshchenkov, S.; Cheprakov, A. New J. Phys. 2008,
10, 1–12.
(4) (a) Friedberg, J. S.; Skema, C.; Baum, E. D.; Burdick, J.; Vinogradov,
S. A.; Wilson, D. F.; Horan, A. D.; Nachamkin, I. J. Antimicrob. Chemother.
2001, 48, 105–107. (b) Ongayi, O.; Gottumukkala, V.; Fronczek, F. R.; Vicente,
M. G. H. Bioorg. Med. Chem. Lett. 2005, 15, 1665–1668. (c) Gottumukkala,
V.; Ongayi, O.; Baker, D. G.; Lomax, L. G.; Vicente, M. G. H. Bioorg. Med.
Chem. 2006, 14, 1871–1879.
(13) The nucleophilic substitution method, developed by Senge et al. (Senge,
M. O.; Bischoff, I. Heterocycles 2005, 65, 879-886), leads to 5-monoaryl and
5,10-Ar2TBPs, but not 5,15-Ar2TBPs (Senge, M. O.; Bischoff, I. Tetrahedron
Lett. 2004, 45, 1647-1650).
(14) (a) Gouterman, M. J. Mol. Spectrosc. 1961, 6, 138–163. (b) Ehrenberg,
B.; Johnson, F. M. Spectrochim. Acta 1990, 46a, 1521–1532.
(5) (a) Barrett, P. A.; Linstead, R. P.; Rundall, F. G.; Tuey, G. A. P. J. Chem.
Soc. 1940, 1079–1092. (b) Bender, C. O.; Bonnett, R.; Smith, R. G. Chem.
Commun. 1969, 345–346. (c) Bender, C. O.; Bonnett, R.; Smith, R. G. J. Chem.
Soc. C 1970, 1251–1257. (d) Bender, C. O.; Bonnett, R.; Smith, R. G. J. Chem.
Soc., Perkin Trans. 1 1972, 771–776. (e) Remy, D. E. Tetrahedron Lett. 1983,
24, 1451–1454. (f) Kopranenkov, V. N.; Makarova, E. A.; Luk’yanets, E. A.
Zh. Obshch. Khim. 1981, 51, 2727–2730. (g) Kopranenkov, V. N.; Makarova,
E. A.; Dashkevich, S. N.; Luk’yanets, E. A. Khim. Geterotsikl. Soed. 1988, 773–
779. (h) Galanin, N. E.; Kudrik, E. V.; Shaposhnikov, G. P. Russ. J. Gen. Chem.
1997, 67, 1306–1309. (i) Galanin, N. E.; Kudrik, E. V.; Shaposhnikov, G. P.
Russ. J. Gen. Chem. 2002, 72, 1119–1122. (j) Ichimura, K.; Sakruagi, M.; Morii,
H.; Yasuike, M.; Fukui, M.; Ohno, O. Inorg. Chim. Acta 1991, 182, 83–86.
(6) (a) Lash, T. D. Energy Fuels 1993, 7, 166–171. (b) Manley, J. M.; Roper,
T. J.; Lash, T. D. J. Org. Chem. 2005, 70, 874–891.
(15) (a) Martinsen, J.; Pace, L. J.; Phillips, T. E.; Hoffman, B. M.; Ibers,
J. A. J. Am. Chem. Soc. 1982, 104, 83–91. (b) Liou, K.; Ogawa, M. Y.;
Newcomb, T. P.; Quirion, G.; Lee, M. H.; Poirier, M.; Halperin, W. P.; Hoffman,
B. M.; Ibers, J. A. Inorg. Chem. 1989, 28, 3889–3896. (c) Liou, K. Y.; Newcomb,
T. P.; Heagy, M. D.; Thompson, J. A.; Heuer, W. B.; Musselman, R. L.; Jacobsen,
C. S.; Hoffman, B. M.; Ibers, J. A. Inorg. Chem. 1992, 31, 4517–4523. (d)
Murata, K.; Liou, K. K.; Thompson, J. A.; McGhee, E. M.; Rende, D. E.; Ellis,
D. E.; Musselman, R. L.; Hoffman, B. M.; Ibers, J. A. Inorg. Chem. 1997, 36,
3363–3369.
(7) (a) Finikova, O. S.; Cheprakov, A. V.; Beletskaya, I. P.; Vinogradov,
S. A. Chem. Commun. 2001, 261–262. (b) Finikova, O. S.; Chernov, S. Y.;
Cheprakov, A. V.; Filatov, M. A.; Vinogradov, S. A.; Beletskaya, I. P. Dokl.
Chem. 2003, 391, 222–224. (c) Finikova, O. S.; Cheprakov, A. V.; Beletskaya,
I. P.; Carroll, P. J.; Vinogradov, S. A. J. Org. Chem. 2004, 69, 522–535.
(8) (a) Finikova, O. S.; Cheprakov, A. V.; Carroll, P. J.; Vinogradov, S. A.
J. Org. Chem. 2003, 68, 7517–7520. (b) Finikova, O. S.; Aleshchenkov, S. E.;
Brin˜as, R. P.; Cheprakov, A. V.; Carroll, P. J.; Vinogradov, S. A. J. Org. Chem.
2005, 70, 4617–4628.
(16) (a) Bajema, L.; Gouterman, M.; Rose, C. J. Mol. Spectrosc. 1971, 39,
421–431. (b) Tsvirko, M. P.; Sapunov, V. V.; Soloviyev, K. N. Opt. Spektrosk.
1973, 34, 1094–1100. (c) Edwards, L.; Gouterman, M.; Rose, C. B. J. Am. Chem.
Soc. 1976, 98, 7638–7641. (d) Aartsma, T. J.; Gouterman, M.; Jochum, C.;
Kwiram, A. L.; Pepich, B. V.; Williams, L. D. J. Am. Chem. Soc. 1982, 104,
6278–6283. (e) Aaviksoo, J.; Frieberg, A.; Savikhin, S.; Stelmakh, G. F.; Tsvirko,
M. P. Chem. Phys. Lett. 1984, 111, 275–278.
(17) Treibs, A.; Ha¨berle, N. Justus Liebigs Ann. Chem. 1968, 718, 183–
207.
(9) (a) Lindsey, J. S.; Hsu, H. C.; Schreiman, I. C. Tetrahedron Lett. 1986,
27, 4969–4970. (b) Lindsey, J. S.; Schreiman, I. C.; Hsu, H. C.; Kearney, P. C.;
Marguerettaz, A. M. J. Org. Chem. 1987, 52, 827.
(18) Collman, J. P.; Chong, A. O.; Jameson, G. B.; Oakley, R. T.; Rose, E.;
Schmittou, E. R.; Ibers, J. A. J. Am. Chem. Soc. 1981, 103, 516–533.
(19) (a) Karotki, A.; Drobizhev, M.; Dzenis, Y.; Taylor, P. N.; Anderson,
H. L.; Rebane, A. Phys. Chem. Chem. Phys. 2004, 6, 7–10. (b) Lin, V. S. Y.;
DiMagno, S. G.; Therien, M. J. Science 1994, 264, 1105. (c) Hori, T.; Nakamura,
Y.; Aratani, N.; Osuka, A. J. Organomet. Chem. 2007, 692, 148–155. (d) Aimi,
J.; Oya, K.; Tsuda, A.; Aida, T. Angew. Chem., Int. Ed. 2007, 46, 2031–2035.
(e) Frampton, M. J.; Accorsi, G.; Armaroli, N.; Rogers, J. E.; Fleitz, P. A.;
McEwan, K. J.; Anderson, H. L. Org. Biomol. Chem. 2007, 5, 1056–1061.
(20) (a) Inokuma, Y.; Osuka, A. Org. Lett. 2004, 6, 3663–3666. (b) Shinmori,
H.; Kajiwara, T.; Osuka, A. Tetrahedron Lett. 2001, 42, 3617–3620.
(21) Kuciauskas, D.; Liddell, P. A.; Lin, S.; Johnson, T. E.; Weghorn, S. J.;
Lindsey, J. S.; Moore, A. L.; Moore, T. A.; Gust, D. J. Am. Chem. Soc. 1999,
121, 8604–8614.
(10) Finikova, O. S.; Cheprakov, A. V.; Vinogradov, S. A. J. Org. Chem.
2005, 70, 9562–9572.
(11) Filatov, M. A.; Cheprakov, A. V.; Beletskaya, I. P. Eur. J. Org. Chem.
2007, 3468–3475.
(12) There are several reports mentioning synthesis of 5,15-diphenyltetra-
benzoporphyrin using the high-temperature template condensation method. The
obtained compounds, however, have never been unambiguously characterized. (a)
Cheng, R. J.; Chen, Y. R.; Chuang, C. E. Heterocycles 1992, 34, 1–4. (b)
Ichimura, K.; Sakuragi, M.; Morii, H.; Yasuike, M.; Fukui, M.; Ohno, O. Inorg.
Chim. Acta 1990, 176, 31–3. (c) Kudrik, E. V.; Islyaikin, M. K.; Frantseva,
S. V. Zh. Obshch. Khim. 1997, 67, 1202–1205.
4176 J. Org. Chem. Vol. 73, No. 11, 2008