C O M M U N I C A T I O N S
Soc. 1964, 86, 2378. Corfield, J. R.; Trippett, S. Chem. Commun. 1970,
1267. Allen, D. A.; Grayson, S. J.; Harness, I.; Hutley, B. G.; Mowat,
I. W. J. Chem. Soc., Perkin Trans. 2 1973, 1912. Schnell, A.; Tebby, J. C.
J. Chem. Soc., Perkin Trans. 1 1977, 9, 1883. McClelland, R. A.; McGall,
G. H.; Patel, G. J. Am. Chem. Soc. 1985, 107, 5204. Gilheany, D. G.;
Thompson, N. T.; Walker, B. J. Tetrahedron Lett. 1987, 28, 3843. Cristau,
H.-J.; Mouchet, P. Phosphorus, Sulfur Silicon Relat. Elem. 1995, 107, 135.
Lee, K. Y.; Na, J. E.; Lee, M. J.; Kim, J. N. Tetrahedron Lett. 2004, 45,
5977.
(2) Wittig, G.; Maercker, A. Chem. Ber. 1964, 97, 747.
(3) Pietrusiewicz, K. M.; Stankevicˇ, M. Sci. Synth. 2009, 42, 221.
(4) Yoshifuji, M. Sci. Synth. 2009, 42, 63.
(5) Quin, L. D.; Mesch, K. A. J. Chem. Soc., Chem. Commun. 1980, 959.
Mesch, K. A.; Quin, L. D. Tetrahedron Lett. 1980, 21, 4791. Quin, L. D.;
Szewczyk, J. J. Chem. Soc., Chem. Commun. 1984, 1551. Quin, L. D.;
Szewczyk, J. J. Chem. Soc., Chem. Commun. 1986, 844. Quin, L. D.;
Jankowski, S.; Rudsinski, J.; Sommese, A. G.; Wu, X.-P. J. Org. Chem.
1993, 58, 6212.
(6) (a) Mathey, F.; Mercier, F. Tetrahedron Lett. 1981, 22, 319. (b) Holand,
S.; Mathey, F. J. Org. Chem. 1981, 46, 4386. (c) Tian, R.; Duan, Z.; Zhou,
X.; Geng, D.; Wu, Y.; Mathey, F. Chem. Commun. 2009, 2589.
(7) (2): 31P NMR (DMSO-d6): δ 83.7. 1H NMR (DMSO-d6): δ 1.88 (s, 6H,
Me-C), 2.31 (d, JHP ) 14.4 Hz, Me-P), 3.69 (d, 2H, JHH ) 1.2 Hz, CH-
CO), 4.37 (dd, 2H, JHP ) 5.4, CH-P), 7.03 (m, 2H, NPh), 7.45-7.53 (m,
3H, NPh), 7.73-7.86 (m, 3H, PPh), 8.08-8.15 (m, 2H, PPh). 13C NMR
(DMSO-d6): δ 4.44 (d, JCP ) 51.7 Hz, Me-P), 15.40 (Me-C), 44.34 (d,
JCP ) 16.3 Hz, CH(CO)), 45.40 (d, JCP ) 55.1 Hz, CH-P), 119.30 (d, JCP
) 41.5 Hz, C ipso Ph-P), 174.03 (d, JCP ) 15.5 Hz, CO).
Figure 1. Computed structures of (8) and (9). Most significant bond lengths
(Å) and angles (deg) for (8): P-Br, 2.848; P-C2, 1.911; P-C3, 1.888;
P-C15, 1.828; P-C20, 1.832; C2-P-C3, 79.6; Br-P-C15, 84.6;
Br-P-C20, 83.3; C15-P-C20, 112.6. For (9): P-O, 1.783; P-C2, 2.02;
P-C3, 1.924; P-C15, 1.844; P-C20, 1.855; C2-P-C3, 76.3; O-P-C15,
94.0; O-P-C20, 92.3; C15-P-C20, 110.0.
(8) (3a,b) was separated by chromatography on silica gel with 20:1 CH2Cl2/
EtOH as the eluent. (3a): first eluted, yield 39.2% from (2). 31P NMR
(CDCl3): δ 41. 1H NMR (CDCl3): δ 1.75 (d, JHP ) 12.9 Hz, Me-P), 1.84
(d, JHP ) 5.1 Hz, Me-C), 1.89 (s, Me-C), 2.48 (d, 1H, JHH ) 15.3 Hz,
CH2), 3.21-3.44 (m, 4H, CH + CH2), 7.13-7.16 (m, 2H, NPh), 7.35-
7.44 (m, 3H, PPh), 7.56 (br, 3H, NPh), 7.80-7.83 (m, 2H, PPh). 13C NMR
(CDCl3): δ 15.92 (d, JCP ) 69.3 Hz, Me-P), 20.55 (d, JCP ) 3.1 Hz, Me-
(C)), 21.23 (d, JCP ) 2.3 Hz, Me-(C)), 31.61 (d, JCP ) 2.8 Hz, CH2),
39.73 (d, JCP ) 2.9 Hz, CH), 40.65 (s, CH), 46.28 (d, JCP ) 69.4 Hz,
CH-P), 121.15 (d, JCP ) 7.4 Hz, C ipso NPh), 126.18 (s, CH NPh), 128.57
(s, CH para NPh), 129.05 (d, JCP ) 11.1 Hz, CH PPh), 129.06 (s, CH
NPh), 130.46 (d, JCP ) 8.8 Hz, CH PPh), 131.95 (s, C(Me)), 132.13 (d,
JCP ) 2.7 Hz, C(Me)), 132.59 (d, JCP ) 91.3 Hz, C ipso PPh), 133.49 (d,
JCP ) 8.7 Hz, CH para PPh). (3b): yield 36.4%. 31P NMR (CDCl3): δ 38.
1H NMR (CDCl3): δ 1.22 (s, Me-C), 1.61 (d, JHP ) 5.1 Hz, Me-C), 1.91
(d, JHP ) 12 Hz, Me-P), 2.26 (d, 1H, JHH ) 15.9 Hz, CH2), 2.72 (br, 1H,
CH2), 3.18 (d, JHP ) 10.5 Hz, CH-P), 3.40 (m, CH), 3.80 (m, CH), 7.18
(m, 2H, NPh), 7.34-7.60 (m, 6H, NPh + PPh), 7.68-7.74 (m, 2H, PPh).
interaction. The strain of the bridge and the long P-C bridge bonds
explain why (8) can collapse easily to give the dimethylbromophos-
phine. The calculations show that (9) is a genuine intermediate (a
local minimum with no imaginary frequencies). Its structure displays
very long P-C bridge bonds, even longer than the corresponding
bonds in (8). The bridge is very strained, with a C-P-C angle of
76.3°, which is smaller than the corresponding angle in (8). These
data suggest that (9) loses its bridge very easily. Upon removal of
the hydroxyl proton from (9), the bicyclic structure directly collapses
to give (10) with no detectable intermediate or transition state. On
this basis, we explain our results as follows. When the hydrolysis
of (2) is conducted in weakly basic media,13 the half-life of the
intermediate hydroxyphosphorane is sufficiently long that this
species can lose its bridge to give the phosphinous acid. When the
hydrolysis is conducted in strongly basic media, the fast deproto-
nation induces the collapse toward the tertiary phosphine oxide.
13C NMR (CDCl3): δ 15.47 (d, JCP ) 66.9 Hz, Me-P), 20.16 (d, JCP
3.0 Hz, Me-(C)), 20.32 (d, JCP ) 1.7 Hz, Me-(C)), 31.12 (d, JCP ) 2.6
Hz, CH2), 39.55 (d, JCP ) 2.9 Hz, CH), 40.66 (s, CH), 47.39 (d, JCP
)
)
68.9 Hz, CH-P), 121.61 (d, JCP ) 7.4 Hz, C ipso NPh), 126.25 (s, CH
NPh), 128.57 (d, JCP ) 10.8 Hz, CH PPh), 128.64 (s, CH para NPh), 129.11
(s, CH NPh), 130.61 (d, JCP ) 8.9 Hz, CH PPh), 131.97 (s, C(Me)), 132.19
(d, JCP ) 2.6 Hz, C(Me)), 132.07 (d, JCP ) 95.6 Hz, C ipso PPh), 132.29
(d, JCP ) 9.3 Hz, CH para PPh).
(9) (4): purified by chromatography with EtOAc/CH2Cl2 as the eluent, yield
48% from (1). 31P NMR (CDCl3): δ 20.6 (d, JPH ) 474 Hz). 1H NMR
3
(CDCl3): δ 1.71 (dd, 3H, JHH ) 3.9 Hz, JHP ) 13.8 Hz, Me), 7.43-7.50
(m, 3H, Ph), 7.54 (dq, JHP ) 475 Hz, 3JHH ) 3.9 Hz, PH), 7.60-7.67 (m,
2H, Ph). 13C NMR (CDCl3): δ 16.25 (d, JCP ) 68.8 Hz, Me), 128.89 (d,
JCP ) 12.6 Hz, CH Ph), 129.49 (d, JCP ) 11.2 Hz, CH Ph), 131.97 (d, JCP
) 99.7 Hz, C ipso Ph), 132.42 (s, C para Ph).
(10) (5): 1H NMR (CDCl3): δ 1.90 (s, 3H, Me), 1.94 (s, 3H, Me), 2.36-2.47
(m, 1H, CH2), 2.61-2.70 (m, 1H, CH2), 3.49-3.59 (m, 1H, CH), 6.90 (d,
1H, dCH), 7.34-7.50 (m, 5H, Ph). 13C NMR (CDCl3): 17.15 (s, Me),
20.06 (s, Me), 30.66 (s, CH2), 38.59 (s, CH) 122.75, 126.41, 126.50, 128.34,
129.04, 132.07, 133.75, 136.89 (s, sp2-C), 166.95 (s, CO), 175.30 (s, CO).
Acknowledgment. The authors thank the National Natural
Science Foundation of China (20702050), Zhengzhou University
(P. R. China), and the Nanyang Technological University in
Singapore for the financial support of this work.
1
MS: m/z 254.0 (100, [M + H]+). (6): 31P NMR (C6D6): δ 75.6. H NMR
(C6D6): δ 3.08 (d, JHP ) 7.3 Hz, CH2). 13C NMR (C6D6): δ 42.92 (d, JCP
) 33.6 Hz, CH2). (7): yield 48% from (1). 31P NMR (CDCl3): δ 30 (d, JPH
2
) 475 Hz). 1H NMR (CDCl3): δ 3.34 (dt, 1H, JHH ) JHP ) 14.6 Hz,
2
CH2), 3.46 (dt, 1H, JHH ) JHP ) 14.6 Hz, CH2), 7.05 (m, 2H, benzyl),
7.20-7.29 (m, 3H, benzyl), 7.40-7.55 (m, 5H, Ph), 7.46 (dt, JHP ) 475
3
Hz, JHH ) 3.2 Hz, PH). 13C NMR (CDCl3): δ 38.76 (d, JCP ) 62.4 Hz,
Supporting Information Available: Complete ref 11. This material
CH2).
(11) Frisch, M. J.; et al. Gaussian 03, revision B.05; Gaussian, Inc.: Pittsburgh,
PA, 2003.
(12) Greenwood, N. N.; Earnshaw, A. Chemistry of the Elements; Pergamon:
Oxford, U.K., 1984; p 568.
(13) For Et3N, pKa 10.5 in water and 18.8 in MeCN; for R-picoline, pKa 6.0 in
water and 13.3 in MeCN. See: Clark, J.; Perrin, D. D. Q. ReV. Chem. Soc.
1964, 18, 295. Glasovac, Z.; Eckert-Maksic´, M.; Maksic´, Z. B. New
J. Chem. 2009, 33, 588.
References
(1) Fenton, G. W.; Ingold, C. K. J. Chem. Soc. 1929, 2342. Horner, L.;
Hoffmann, H.; Wippel, H. G.; Hassel, G. Chem. Ber. 1958, 91, 52. Zanger,
M.; WanderWerf, C. A.; McEwen, W. E. J. Am. Chem. Soc. 1959, 81,
3806. Aksnes, G.; Songstad, J. Acta Chem. Scand. 1962, 16, 1426. Hudson,
R. F.; Green, M. Angew. Chem., Int. Ed. Engl. 1963, 2, 11. McEwen, W. E.;
Kumli, K. F.; Blade-Font, A.; Zanger, M.; WanderWerf, C. A. J. Am. Chem.
JA907789Y
9
J. AM. CHEM. SOC. VOL. 131, NO. 44, 2009 16009