Synthesis of Toxaphene Components
J. Agric. Food Chem., Vol. 53, No. 26, 2005 10111
(11) Hoh, E.; Hites, R. A. Sources of toxaphene and other orga-
nochlorine pesticides in North America as determined by air
measurements and potential source contribution function analy-
ses. EnViron. Sci. Technol. 2004, 38, 4187-4194.
(12) Rice, C. P.; Samson, P. J.; Noguchi, G. E. Atmospheric transport
of toxaphene to Lake Michigan. EnViron. Sci. Technol. 1986,
20, 1109-1116.
(13) James, R. R.; Hites, R. A. Atmospheric transport of toxaphene
from the southern United States to the Great Lakes Region.
EnViron. Sci. Technol. 2002, 36, 3474-3481.
(14) Miskimmin, B. M.; Muir, D. C. G.; Schindler, D. W.; Stern, G.
A.; Grift, N. P. Chlorobornanes in Sediments and Fish 30 Years
after Toxaphene Treatment of Lakes. EnViron. Sci. Technol.
1995, 29, 2490-2495.
(15) Stern, G. A.; Loewen, M. D.; Miskimmin, B. M.; Muir, D. C.
G.; Westmore, J. B. Characterization of two major toxaphene
components in treated lake sediment. EnViron. Sci. Technol.
1996, 30, 2251-2258.
(16) Donald, D. B.; Stern, G. A.; Muir, D. C. G.; Fowler, B. R.;
Miskimmin, B. M.; Bailey, R. Chlorobornanes in Water, Sedi-
ment, and Fish from Toxaphene Treated and Untreated Lakes
in Western Canada. EnViron. Sci. Technol. 1998, 32, 1391-
1397.
B6-913 were formed in 46.9 and 21.2% yields, respectively.
Additionally, two other hexachlorobornanes were detected in
27.6 and 4.3% yields, and the first one (compound 2, Figure
2) was also one of the major components of the irradiated
toxaphene (Figure 2). Extended chlorination of 2-exo,3-endo,8,9,-
10-pentachlorobornane yields, besides P 32 as the major
heptachlorobornane, B7-1001, compounds 4-7, 2-exo,3-endo,5-
exo,8,9,10,10-heptachlorobornane (B7-1450), 2-exo,3-endo,6-
exo,8,9,10,10-heptachlorobornane (B7-1474), 2-exo,3-endo,5-
exo,6-exo,8,9,10,10-heptachlorobornane (B7-1440), B7-1462,
and some other unidentified compounds. In this reaction, B7-
1001 was formed in a much higher yield than was possible alone
from the amount of B6-913, indicating that there had to be a
second hexachlorobornane in a significant amount that reacted
to form B7-1001. A further indication that all B7-1001 was not
formed from B6-913 was the ratio B7-1001/4 of 2.55 if B6-
913 was chlorinated. This ratio increased to 5.5 by chlorination
of 1. As a consequence, only the compound with 27.6% yield
having the structure 2-exo,3-endo,5-exo,8,9,10-hexachlorobor-
nane meets all requirements for the experimental results
mentioned above. This compund was recently identified as the
major anaerobic transformation product from B7-1001 (43).
(17) Vetter, W.; Maruya, K. A. Congener and enantioselective analysis
of toxaphene in sediment and food web of a contaminated
estuarine wetland. EnViron. Sci. Technol. 2000, 34, 1627-1635.
(18) Jantunen, L. M. M.; Bidleman, T. F.; Harner, T.; Parkhurst, W.
J. Toxaphene, Chlordane, and Other Organochlorine Pesticides
in Alabama Air. EnViron. Sci. Technol. 2000, 34, 5097-5105.
(19) Shoeib, M.; Brice, K A.; Hoff, R. M. Studies of toxaphene in
technical standard and extracts of background air samples (Point
Petre, Ontario) using multidimensional gas chromatography-
electron capture detection (MDGC-ECD). Chemosphere 2000,
40, 201-211.
(20) Parr, J. F.; Smith, S. Degradation of toxaphene in selected
anaerobic soil environments. Soil Sci. 1976, 121, 52-57.
(21) Fingerling, G. Thesis, University of Kassel, Kassel, Germany,
1995.
(22) Fingerling, G.; Coelhan, M.; Parlar, H. Investigations of the
stability of seventeen single toxaphene components in the
presence of UV-light and in an anaerobic soil environment.
Fresenius’ EnViron. Bull. 1998, 7a/8a, 525-531.
(23) Fingerling, G.; Coelhan, M.; Angerho¨fer, D.; Parlar, H. Structure
Stability Relationship of Chlorinated Bornanes in the Environ-
ment. Organohalogen Compd. 1997, 33, 17-22.
(24) Fingerling, G.; Hertkorn, N.; Parlar, H. Formation and spectro-
scopic investigation of two hexachlorobornanes from six envi-
ronmentally relevant toxaphene components by reductive dechlo-
rination in soil under anaerobic conditions. EnViron. Sci. Technol.
1996, 30, 2984-2992.
(25) Fingerling, G.; Maurer, M.; Coelhan, M.; Parlar, H. Photolysis
of the toxaphene component 2,2,3-exo,5,5,8,9,9,10,10-decachlo-
robornane. Fresenenius’ EnViron. Bull. 1998, 7, 610-617.
(26) Saleh, M. A.; Casida, J. E. Reductive dechlorination of the
toxaphene component 2,2,5-endo, 6-exo,8,9,10-heptachlorobor-
nane in various chemical, photochemical and metabolic systems.
J. Agric. Food Chem. 1978, 26, 583-590.
(27) Parlar, H.; Ga¨b, S.; Nitz, S.; Korte, F. Zur Photochemie des
Toxaphens, Reaktionen von chlorierten Bornanderivaten in
Lo¨sung und adsorbiert an Kieselgel. Chemosphere 1976, 5, 333-
338.
ACKNOWLEDGMENT
We are grateful to Prof. Dr. H. Parlar for valuable suggestions.
Supporting Information Available: Mass spectra of 3, 4, 5,
7, and 8; 13C NMR spectra of 3, 4, and 5; H NMR spectra of
1
4 and 5. This material is available free of charge via the Internet
LITERATURE CITED
(1) U.S. EPA. 823-F-99-018. Toxaphene Update: Impact on Fish
AdVisories; U.S. GPO: Washington, DC, 1999.
(2) Kuhnlein, H. W.; Receveur, O.; Muir, D. C. G.; Chan, H. M.;
Soueida, R. Arctic indigenous women consume greater than
acceptable levels of organochlorines. J. Nutr. 1995, 125, 2501-
2510.
(3) Newsome, W. H.; Ryan, J. J. Toxaphene and other chlorinated
compounds in human milk from northern and southern Canada:
a comparison. Chemosphere 1999, 39, 519-526.
(4) Koryta´r, P.; van Stee, L. L. P.; Leonards, P. E. G.; de Boer, J.;
Brinkman, U. A. Th. Attempt to unravel the composition of
toxaphene by comprehensive two-dimensional gas chromatog-
raphy with selective detection. J. Chromatogr. A 2003, 994,
179-189.
(5) de Geus, H. J.; Besselink, H.; Brouwer, A.; Klungsøyr, J.;
McHugh, B.; Nixon, E.; Rimkus, G.; Wester, P. G.; de Boer, J.
Environmental occurrence, analysis, and toxicology of toxaphene
compounds. J. EnViron. Health Perspect. 1999, 107 (Suppl. 1),
115-144.
(6) Gouteux, B.; Lebeuf, M.; Hammill, M. O.; Muir, D. C. G.;
Gagne´, J.-P. Comparison of toxaphene congeners levels in five
seal species from eastern Canada: what is the importance of
biological factors? EnViron. Sci. Technol. 2005, 39, 1448-1454.
(7) Gouteux, B.; Lebeuf, M.; Muir, D. C. G.; Gagne´, J.-P. Levels
and temporal trends of toxaphene congeners in beluga whales
(Delphinapterus leucas) from the St. Lawrence Estuary, Canada.
EnViron. Sci. Technol. 2003, 37, 4603-4609.
(8) Kidd, K. A.; Schindler, D. W.; Muir, D. C. G.; Lockhart, W.
L.; Hesslein, R. H. High concentration of toxaphene in fishes
from a subarctic lake. Science 1995, 269, 240-242.
(9) Swackhamer, D. L.; Pearson, R. F.; Schottler, S. P. Toxaphene
in the Great Lakes. Chemosphere 1998, 37, 2545-2561.
(10) Bidleman, T. F.; Olney, C. E. Long-Range Transport of
Toxaphene Insecticide in the Atmosphere of the Western North
Atlantic. Nature 1976, 257, 475-477.
(28) Parlar, H. Photoinduced reactions of two toxaphene compounds
in aqueous medium and adsorbed on silica gel. Chemosphere
1988, 17, 2141-2150.
(29) Saleh, M. A.; Turner, W. V.; Casida, J. E. Polychlorobornane
components of toxaphene, strukture toxicity relations and
metabolic reductive dechlorination. Science 1977, 198, 1256-
1258.
(30) Promochem GmbH, Wesel, Germany.