1192
R. Kadyrov et al. / Tetrahedron: Asymmetry 19 (2008) 1189–1192
5.32. Found: C, 50.08; H, 8.19; N, 5.20; E-isomer E-6b: Rf-value
0.50; m = 0.7 g (10%) of white crystals, mp = 151–155 °C; 1H NMR
(CDCl3) d 7.07 (s (br), 1H, NH); 6.54 (d, J = 12.3 Hz, 1H, @CH),
4.00 (m, 4H, OCH2), 3.68 (m, 1H, CH), 2.11 (s, 3H, CH3), 1.27 (d,
J = 7.0 Hz, H, CH3), 1.10 (d, J = 7.0 Hz, 6H, CH3); 13C NMR (CDCl3) d
169.9 (C@O), 157.2 (d, J = 20 Hz, N–C@), 95.4 (d, J = 199 Hz, @CH),
61.2 (d, J = 5 Hz, OCH2), 30.5 (d, J = 6 Hz, CH), 25.0 (CH3), 20.2
(CH3), 16.2 (d, J = 6 Hz, CH3); 31P NMR (CDCl3) d +21.6; Anal. Calcd
for C11H22NO4P (263.27): C, 50.18; H, 8.42; N, 5.32. Found: C,
49.89; H, 8.28; N, 5.19.
References
1. Palacios, F.; Alonso, C.; de los Santos, J. M. Chem. Rev. 2005, 105, 899–931. and
references cited therein.
2. Enantioselective Synthesis of b-Amino Acids; Juaristi, E., Soloshonok, V., Eds., 2nd
ed.; John Wiley & Sons: Hoboken, 2005.
3. Allen, J. G.; Arthenton, F. R.; Hall, M. J.; Hassall, C. H.; Holmes, S. W.; Lambert, R.
W.; Nisbert, L. J.; Ringrose, P. S. Nature 1978, 272, 56–58.
4. (a) Kolodiazhnyi, O. I. Tetrahedron: Asymmetry 2005, 15, 3295–3340; (b) Smith,
W. W.; Bartlett, P. A. J. Am. Chem. Soc. 1998, 120, 4622–4628; (c) Allen, M. C.;
Fuhrer, W.; Tuck, B.; Wade, R.; Wood, J. M. J. Med. Chem. 1989, 32, 1652–1661.
5. Hirschmann, R.; Smith, A. B., III; Talor, C. M.; Benkovic, P. A.; Taylor, C. D.; Yager,
K. M.; Sprengler, P. A.; Benkovic, S. J. Science 1994, 265, 234.
6. Alonso, E.; Alonso, E.; Solis, A.; del Pozo, C. Synlett 2000, 698–700.
7. Ma, J.-A. Chem. Soc. Rev. 2006, 35, 630–636.
8. Wasilewski, C.; Demblowski, L.; Topolski, M. Synthesis 1989, 52–53.
9. Roy-Gourvennec, S.; Lemarie, M.; Masson, S. Phosphorus, Sulfur, Silicon 1997,
123, 247–254.
4.6. General procedure for the asymmetric hydrogenation
4.6.1. High-throughput hydrogenations27
The screening was performed in a reactor hosting 24 GC-vials.
In a glovebox under argon successively in each vessel 100 lL of
CH2Cl2, 1 mmol of [Rh(COD)2]BF4 (100 lL 0.01 M in CH2Cl2), and
1.1 lmol of ligand (110 lL 0.01 M in CH2Cl2) were mixed. Then
the solvent was evaporated. To each vessel 0.5 mL of a freshly pre-
pared solution of 0.1 mmol of vinylphosphonate in the solvent was
added. The reactor was placed in an autoclave. Hydrogen with an
initial pressure of 40 bar was added and the vessels stirred for
24 h. After depressurizing the reaction solutions were filtered
through a short pad of silica gel and analyzed.
10. (a) Maier, L.; Diel, P. J. Phosphorus, Sulfur, Silicon 1996, 109–110, 341–344; (b)
Maier, L.; Diel, P. J. Phosphorus, Sulfur, Silicon 1995, 107, 245–255.
11. Isbell, A. F.; Englert, L. F.; Rosenberg, H. J. Org. Chem. 1969, 34, 755–756.
12. Xu, C.; Yuan, C. Eur. J. Org. Chem. 2004, 4410–4415.
13. Nesterov, V. V.; Kolodiazhnyi, O. I. Synlett 2007, 2400–2404.
14. (a) Bosco, M.; Bisseret, P.; Bouix-Peter, C.; Eustache, J. Tetrahedron Lett. 2001,
42, 7949–7952; (b) Sauveur, F.; Collignon, N.; Guy, A.; Savignac, P. Phosphorus,
Sulfur 1983, 14, 341–346.
15. (a) Au-Yeung, T. T.-L.; Chan, S.-S.; Chan, A. S. C. In Transition Metals for Organic
Synthesis; Beller, M., Bolm, C., Eds., 2nd ed.; Wiley-VCH: Weinheim, 2004; pp
14–28; (b) Ohkuma, T.; Kitamura, M.; Noyori, R. In Catalytic Asymmetric
Synthesis; Ojima, I., Ed., 2nd ed.; Wiley-VCH: New York, 2000; pp 9–17.
16. (a) Enthaler, S.; Erre, G.; Junge, K.; Holz, J.; Börner, A.; Alberico, E.; Nieddu, I.;
Gladiali, S.; Beller, M. Org. Process Res. Dev. 2007, 11, 568–577; (b) Monti, C.;
Gennari, C.; Piarulli, U.; de Vries, J. G.; de Vries, A. H. M.; Lefort, L. Chem. Eur. J.
2005, 11, 6701–6717; (c) Dai, Q.; Yang, W.; Zhang, X. Org. Lett. 2005, 7, 5343–
5345; (d) Reetz, M. T.; Li, X. Angew. Chem., Int. Ed. 2005, 44, 2959–2962. and
references cited therein.
17. (a) Brown, J. M. In The Handbook of Homogeneous Hydrogenation; de Vries, J. G.,
Elsevier, C. J., Eds.; Wiley-VCH: Weinheim, 2007; pp 1073–1103. Chapter 31;
(b) Drexler, H.-J.; You, J.; Zhang, S.; Fischer, C.; Baumann, W.; Spannenberg, A.;
Heller, D. Org. Process Res. Dev. 2003, 7, 355–361.
18. For the preparation of other functionalized phosphonates by Rh- and Ru-
catalyzed asymmetric hydrogenation, see: (a) Wang, D.-Y.; Hu, Y.-P.; Huang, J.-
D.; Deng, J.; Yu, S.-B.; Duan, Z.-D.; Xu, X.-F.; Zeng, Z. Angew. Chem., Int. Ed. 2007,
46, 8002–8005; (b) Badkar, P. A.; Rath, N. P.; Spilling, C. D. Org. Lett. 2007, 9,
3619–3622.
4.6.2. Optimization
The asymmetric hydrogenation was carried out with an auto-
matic hydrogenation device hosting 8 autoclaves (HP-ChemScan
HEL-Group). The Rh-catalyst (3.3 lmol) and the substrate
(0.33 mmol) were transferred into the autoclaves and kept under
argon. The solvent (4 mL) was added and the autoclaves were pres-
surized with hydrogen to the appropriate pressure after reaching
the temperature of 25 °C. The gas uptake was monitored over a
period of 24 h.
19. (a) Wang, D.-Y.; Huang, J.-D.; Hu, X.-P.; Deng, J.; Yu, S.-B.; Duan, Z.-C.; Zheng, Z.
J. Org. Chem. 2008, 73, 2011–2014; (b) Gridnev, I. D.; Yasutake, M.; Imamoto, T.;
Beletskaya, I. P. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 5385–5390; (c) Holz, J.;
Stürmer, R.; Schmidt, U.; Drexler, H.-J.; Heller, D.; Krimmer, H.-P.; Börner, A.
Eur. J. Org. Chem. 2001, 4615–4624; (d) Burk, M. J.; Stammers, T. A.; Straub, J. A.
Org. Lett. 1999, 1, 387–390; (e) Dwars, T.; Schmidt, U.; Fischer, C.; Grassert, I.;
Kempe, R.; Froehlich, R.; Drauz, K.; Oehme, G. Angew. Chem., Int. Ed. 1998, 27,
2851–2853; (f) Schmidt, U.; Oehme, G.; Krause, H.-W. Synth. Commun. 1996,
26, 777–781.
20. For example: (a) Rozalski, M.; Krajewska, U.; Panczyk, M.; Mirowski, M.;
Rozalska, B.; Wasek, T.; Janecki, T. Eur. J. Med. Chem. 2007, 42, 248–255; (b)
Wasek, T.; Olczak, J.; Janecki, T. Synlett 2006, 1507–1510; (c) Okada, Y.;
Minami, T.; Miyamoto, M.; Tsuneyuki, O.; Sumiko, S.; Junji, S. Heteroatom Chem.
1995, 6, 195–210.
4.7. rac-Diethyl 2-acetamino-2-phenylethylphosphonate rac-7a
Pale yellow oil; 1H NMR (CDCl3) d 7.30–7.12 (m, 5H, arom. H),
5.30 (1H, m, CH–N), 3.97 (m, 2H, OCH2), 3.69 (m, 2H, OCH2), 2.36
(s (br), 1H, NH); 2.36–2.12 (2H, m, CH2-P), 1.95 (s, 3H, CH3), 1.22
(t, 3H, J = 7.1 Hz, CH3), 1.00 (t, 3H, J = 7.0 Hz, CH3); 13C NMR (CDCl3)
d 169.2 (C@O), 141.2 (d, J = 8 Hz, arom. C), 128.3, 127.2, 126.0
(arom. CH), 61.7 (d, J = 7 Hz, OCH2), 61.4 (d, J = 6 Hz, OCH2), 48.2
(d, J = 5 Hz, CH–N), 32.1 (d, J = 139 Hz, CH2P), 23.1 (CH3), 16.2 (d,
J = 6 Hz, CH3), 15.9 (d, J = 6 Hz, CH3); 31P NMR (CDCl3) d +27.9; Anal.
Calcd for C14H22NO4P (299.30): C, 56.18; H, 7.41; N, 4.68. Found: C,
56.63; H, 7.53; N, 4.32.
21. (a) Johnson, A.-L.; Slaett, J.; Janosik, T.; Bergman, J. Heterocycles 2006, 68, 2165–
2170; (b) Pietruszka, J.; Witt, A. Synthesis 2006, 4266–4268.
22. Sakhibullina, V. G.; Polezhaeva, N. A.; Bagautdinova, D. A.; Arbuzov, B. A. Zh.
Obshch. Khim. 1991, 61, 2421–2427.
4.8. rac-Diethyl 2-acetamino-2-isopropylethylphosphonate
rac-7b
23. (a) Sakhibullina, V. G.; Polezhaeva, N. A.; Bagautdinova, D. A.; Arbuzov, B. A. Zh.
Obshch. Khim. 1989, 59, 983–986; (b) Alikin, A. Yu.; Liorber, B. G.; Sokolov, M.
P.; Razumov, A. I.; Zykova, T. V.; Salakhutdinov, R. A. Zh. Obshch. Khim. 1982, 52,
316–322.
24. Panarina, A. E.; Dogadina, A. V.; Ionin, B. I. Russ. J. Gen. Chem. 2001, 71, 147–148.
25. (a) Khusainova, N. G.; Mostovaya, O. A.; Berdnikov, E. A.; Litvinov, I. A.;
Krivolapov, D. B.; Cherkasov, R. A. Russ. J. Org. Chem. 2005, 41, 1260–1264; (b)
Palacios, F.; Aparicio, D.; Garcia, J. Tetrahedron 1996, 52, 9609–9628.
26. (a) Palacios, F.; Ochoa De Retana, A. M.; Pascual, S.; Oyarzabal, J. J. Org. Chem.
2004, 69, 8767–8774; (b) Palacios, F.; Garcia, J.; Ochoa de Retana, A. M.;
Oyarzabal, J. Heterocycles 1995, 41, 1915–1922; (c) Shin, W. S.; Lee, K.; Oh, D. Y.
Tetrahedron Lett. 1995, 36, 281–282.
27. All results of the HTS can be obtained from the authors on request.
28. It should be noted, however, when in an individual trial 3 mmol of Z-6b was
hydrogenated with [Rh((R)-SYNPHOS)(COD)]BF4 in methanol, the chiral
product was obtained in quantitative yield and in 94% ee. Obviously in some
cases the HTS-approach can give some misleading results. Currently, this
aspect is under investigation.
Pale yellow oil; 1H NMR (CDCl3) d 6.32 (d (br), 1H, NH); 4.10–
3.88 (m, 5H, CH–N, OCH2), 2.02–1.80 (3H, m, CH, CH2P), 1.91 (s,
3H, CH3), 1.24 (dt, J = 7.1, 3.1 Hz, 6H, CH3), 0.85 (d, J = 6.8 Hz, 3H,
CH3), 0.83 (d, J = 6.8 Hz, 3H, CH3); 13C NMR (CDCl3) d 169.4
(C@O), 61.6 (d, J = 7 Hz, OCH2), 61.1 (d, J = 6 Hz, OCH2), 49.7 (d,
J = 4 Hz, CH–N), 31.9 (d, J = 10 Hz, CH), 27.2 (d, J = 140 Hz, CH2P),
23.0 (CH3), 18.5 (CH3), 18.3 (CH3), 16.1 (d, CH3, JC,P = 6 Hz); 31P
NMR (CDCl3) d +30.1; Anal. Calcd for C11H24NO4P (265.29): C,
49.80; H, 9.12; N, 5.28. Found: C, 50.18; H, 9.23; N, 5.07.
Acknowledgments
29. Up to now correlation of the sign of the specific rotation with the absolute
configuration cannot be given. A comparison with the specific rotation of
known chiral b-substituted b-amino-ethan-1-ylphosphonates indicates that a
positive sign correlates with an (S)-configuration.
We are grateful for the skilled technical assistance by Mrs. H.
Borgwaldt and Mrs. G. Wenzel. We acknowledge financial support
by the Graduate School 1213 of DFG.