JOURNAL OF THE CHINESE
CHEMICAL SOCIETY
Synthesis of Bis-Thiazolidinones
4. B. M. Mistry, S. Jauhari, Med. Chem. Res. 2013, 22, 635.
5. V. Ravichandran, B. R. P. Kumar, S. Sankar,
R. K. Agrawal, Eur. J. Med. Chem. 2009, 44, 1180.
6. J. Safaei-Ghomi, H. Shahbazi-Alavi, P. Babaei,
H. Basharnavaz, S. G. Pyne, A. C. Willis, Chem. Hetero-
cycl. Compd. 2016, 52, 288.
2H), 5.47 (d, J = 1.4 Hz, 2H), 7.13 (d, J = 8 Hz, 4H),
7.15 (d, J = 8 Hz, 4H);13C NMR (100 MHz, CDCl3):
23.4, 32.2, 33.4, 39.6, 63.1, 126.67, 126.75, 135.6, 149.8,
171.1; Anal. calcd for C26H32N2O2S2:C, 66.63; H,
6.88; N, 5.98; S, 13.68; Found: C, 66.46; H, 6.79; N,
6.04; S, 13.58.
7. R. M. Shaker, Phosphorus, Sulfur Silicon Relat. Elem.
1999, 149, 7.
CONCLUSIONS
8. D. Kumar, M. Sonawane, B. Pujala, V. K. Jain,
A. K. Chakraborti, Green. Chem. 2013, 15, 2872.
9. J. Meshram, P. Ali, V. Tiwari, Green. Chem. Lett. Rev.
2010, 3, 195.
10. A. Mobinikhaledi, A. K. Amiri, Lett. Org. Chem. 2013,
10, 764.
11. R. M. Abdel-Rahman, T. E. Ali, Monatsh. Chem. 2013,
144, 1243.
12. R. Meghyasi, J. Safaei-Ghomi, M. A. Sharif, J. Chem.
Res. 2016, 40, 397.
13. H. Rafieemehr, J. Safaei-Ghomi, J. Chem. Res. 2016,
40, 526.
14. M. Nasr-Esfahani, M. Daghaghale, M. Taei, J. Chin.
Chem. Soc. 2017, 64, 17.
15. M. Chtchigrovsky, A. Primo, P. Gonzalez, K. Molvinger,
M. Robitzer, F. Quignard, F. Taran, Angew. Chem. 2009,
121, 6030.
16. Y. Zhao, J. S. Tian, X. H. Qi, Z. N. Han, Y. Y. Zhuang,
L. N. He, J. Mol. Catal. A. Chem. 2007, 271, 284.
17. J. Sun, J. Wang, W. Cheng, J. Zhang, X. Li, S. Zhang,
Y. She, Green. Chem. 2012, 14, 654.
In conclusion, we have developed a simple and
highly efficient protocol for the synthesis of bis-
thiazolidinones by one-pot pseudo-five-component con-
densation of araldehydes, ethylenediamine, and 2-
mercaptoacetic acid with nano-CuFe2O4-chitosan as a
reusable and robust heterogeneous catalyst under reflux
conditions in toluene. Atom economy, the wide range
of products, excellent yields, reusability of the catalyst,
and little catalyst loading are some of the important
features of this protocol.
ACKNOWLEDGMENTS
The authors are grateful to the University of
Kashan, Iran, for supporting this work (Grant No:
159196/XXII).
Supporting information
Additional supporting information is available in
the online version of this article.
18. R. D. Waldron, Phys. Rev. 1955, 99, 1727.
19. J. Qu, G. Liu, Y. Wang, R. Hong, Adv. Powder Technol.
2010, 21, 461.
REFERENCES
20. T. Previtera, M. Basile, M. G. Vigorita, G. Fenech,
F. Occhiuto, C. Circosta, R. C. de Pasquale, Eur. J. Med.
Chem. 1987, 22, 67.
1. K. Appalanaidu, R. Kotcherlakota, T. L. Dadmal,
V. S. Bollu, R. M. Kumbhare, C. R. Patra, Bioorg. Med.
Chem. Lett. 2016, 26, 5361.
21. V. V. Kouznetsov, D. F. Amado, A. Bahsas, J. Amaro-
Luis, J. Heterocyclic Chem. 2006, 43, 447.
22. M. G. Dekamin, M. Azimoshan, L. Ramezani, Green.
Chem. 2013, 15, 811.
2. V. Ravichandran, A. Jain, K. S. Kumar, H. Rajak,
R. K. Agrawal, Chem. Biol. Drug Des. 2011, 78, 464.
3. A. K. Kulkarni, V. H. Kulkarni, J. Keshavayya,
V. I. Hukkeri, H. W. Sung, Macromol. Biosci. 2005, 5, 490.
J. Chin. Chem. Soc. 2017
© 2017 The Chemical Society Located in Taipei & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
7